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Equations for loci of commuting nilpotent matrices

Abstract

The Jordan type of a nilpotent matrix A is the partition PA

giving the sizes of the Jordan blocks of the Jordan matrix in its
conjugacy class. For Q = (u, u − r) with r at least 2, there is a
known table T (Q) of Jordan types P for n × n matrices whose
maximum commuting nilpotent Jordan type Q(P) is Q (arXiv
math 1409.2192). Let B be the Jordan matrix of partition Q,
and consider the affine space NB parametrizing nilpotent
matrices commuting with B. For a partition P in T (Q), the
locus Z(P) of P is the subvariety of NB parametrizing matrices
A having Jordan type P. In this talk we outline conjectures
and results concerning the equations defining Z(P). If time
permits, we state analogous loci equation conjectures for
partitions in the boxes B(Q) when Q has three or more parts.
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Section 0: The map Q : P → Q(P)

Definition (Nilpotent commutator NB and Q(P).)

V ∼= kn vector space over an infinite field k.
A,B ∈ Matn(k) = Homk(V,V), nilpotent matrices.

CB ⊂ Matn(k) centralizer of B.

NB ⊂ CB : the variety of nilpotent elements of CB .
P ` n is a partition of n;
JP = Jordan block matrix, the sizes of whose blocks is P.

PA = Jordan type of A – the partition such that JPA
= CAC−1 is

similar to A.

Q(P): the maximum Jordan type in Bruhat order of a nilpotent
matrix commuting with JP .
rP = # almost rectangular partitions (parts differ at most by 1)
needed to cover P.
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Problem 1: Determine the map Q : P → Q(P).

Fact (T. Košir, P. Oblak): Q(P) is stable: parts differ pairwise by
at least 2 and Q(Q(P)) = Q(P).

Fact (R. Basili): Q(P) has rP parts.

Partial Answers: Oblak Recursive Conjecture:
Q(P) = Oblak(P). Known for Q = Q(P) with 2 or 3 parts
(P. Oblak, L. Khatami).
Thm: Oblak(P) = λU(P) ≤ Q(P) (L. Khatami, L.K. and A.I.).

Problem 2: Given Q determine all P such that Q(P) = Q.

Partial Answer: i. Table Theorem for Q = (u, u − r), r ≥ 2
(A.I., L.Khatami, B.Van Steirtegham, R. Zhao).

ii. Equations conjecture and Box Conjecture.
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Claim: These should have been classical problems! Canonical
form is due to C. Jordan, 1870. But the map P → Q(P) was not
studied classically.1

In 2006, three independent groups began to work on the
P → Q(P) problem

P. Oblak and T. Košir (Ljubljana)
D. Panyushev (Moscow)
R. Basili, I.-, and L. Khatami (Perugia, Boston).

Connected to Hilbert scheme work of J. Briançon, M. Granger,
R. Basili, V. Baranovsky, A. Premet, N. Ngo and K. Šivic.

Links to work of E. Friedlander, J. Pevtsova, A. Suslin, on
representations of Abelian p-groups [FrPS,CFrP].

1Instead, I. Schur (1905), N.Jordan, M. Gerstenhaber (1958), E. Wang
(1979) studied maximum dimension commuting subalgebras/nilpotent
subalgebras of matrices.
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Section 1: Artinian Gorenstein quotients of
R = k{x , y} and Jordan type of multiplication maps.

When the Hilbert function H of an Artinian R- module X is fixed,
the conjugate partition H∨ is an upper bound for the partitions
that might occur as the Jordan type Px for the multiplication mx

on X by x ∈ R. Given H what are the possible Jordan types
Py , y ∈ R for my on X? Conversely, let P = PA: what is the
maximum Jordan type Q(P) in Bruhat order of a nilpotent matrix
B commuting with A?

Example

Let A = k{x , y}/I , I = (xy , y2 + x3) = f ⊥ where
f = Y 2 − X 3 ∈ kDP [X ,Y ]. Here H(A) = (1, 2, 1, 1) and as k[x ]
module A ∼= 〈1, x , x2, x3; y〉, so Px = (4, 1) = H∨.
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Question. What are the possible Jordan types PA of mA,A ∈ A?
Variation Fix Q = (4, 1). Assume Q is the maximum Jordan type
Q = Q(P) (in Bruhat order) of a nilpotent matrix B commuting
with a matrix A. What are the possible Jordan types P = PA?

Answer Besides (4, 1), here P = (3, 1, 1) is the only other partition
for which Q(P) = (4, 1).

We say Q = (u, u − r) is stable if u > r ≥ 2 (i.e. if its parts differ
pairwise by at least 2). The last four authors show the following in
[IKVZ].

Theorem (Table theorem)

Let Q = (u, u − r) be stable. Then there are exactly (r − 1)(u − r)
partitions Pij(Q), 1 ≤ i ≤ r − 1, 1 ≤ j ≤ u − r such that
Q(Pij) = Q. These form a table T (Q) and Pij has i + j parts. The
table is comprised of B hooks and A rows or partial rows that fit
together as in a puzzle.
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An AR (almost rectangular) partition has parts differing pairwise
by at most 1. Notation: [n]k is the AR partition of n into k parts.

Example

Let Q = (8, 3). Then

T (8, 3) =


(8, 3) (8, [3]2) (8, [3]3)

(5, [6]2) ([8]2, [3]2) ([8]2, [3]3)
(5, [6]3) ([7]2, [4]3) ([7]2, [4]4)
(5, [6]4) (5, [6]5) (5, [6]6)



=


(8, 3) (8, 2, 1) (8, 13)

(5, 3, 3) (4, 4, 2, 1) (4, 4, 13)
(5, 2, 2, 2) (4, 3, 2, 1, 1) (4, 3, 14)

(5, 2, 2, 1, 1) (5, 2, 14) (5, 16)


red− first B hook blue − second B hook
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Def. The diagram of a partition P is a poset whose rows are the
parts of P (P. Oblak, L. Khatami)

• source

β3

��

•

β3

��

• sink

•

α3

??

β2

��

•

α3

::

•

OO

•

ε2,1

OO

•

α2

??

Figure : Diag(DP) for P = (3, 2, 2, 1).
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Def: U-chain in DP determined by an AR Pc ⊂ P: a chain that
includes all vertices of DP from an AR subpartition Pc , + two tails.

The first tail descends from the source of DP to the AR chain of
Pc , and the second tail ascends from the AR chain to the sink of
DP .

Oblak Recursive Conjecture

One obtains Q(P) from DP :

(i) Let C be a longest U-chain of DP . Then |C | = q1, the
biggest part of Q(P).

(ii) Remove the vertices of C from DP , giving a partition
P ′ = P − C . If P ′ 6= ∅ then Q(P) = (q1,Q(P ′)) (Go to (i).).

Known for Q stable with two or three parts (P. Oblak determines
the largest part, and L. Khatami the smallest part of Q(P)).
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Figure : U-chain C4: P = (5, 4, 3, 3, 2, 1) and new
U-chain of P ′ = P − C4 = (3, 2, 1).
Q(P) = (12, 5, 1) [figure from LK NU GASC talk 2013]
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Section 2: Table Loci

Assume that Q = (u, u − r) is stable. Recall that B = JQ , the
nilpotent Jordan block matrix of a partition Q above, and NB =
family of nilpotent matrices commuting with B.

Def. Let Pij ∈ T (Q). Then the locus Z(Pij) is the subvariety of
NB parametrizing matrices A such that PA = Pij(Q).

Table Loci Conjecture for stable Q with two parts The locus
Z(Pij) in NB , is a complete intersection (CI) defined by a specified
set of i + j linear and quadratic equations.
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Degenerate case, when Q = (5) has a single part

•v5 a1 //

a2
--

a3

**

a4

))•v4 a1 // •v3 a1 // •v2 a1 // •v1

Figure : Diagram of DQ and maps for Q = (5).

Example (Diagram and equations of column loci for Q = (5).)

When2 a1 = 0, a2 6= 0 then we have strings (cyclic modules)
v5 → v3 → v1 and v4 → v2 so PA = (3, 2) = [5]2.

When a1 = a2 = 0, a3 6= 0 then we have strings
v5 → v2 and v4 → v1 and v3, so PA = (2, 2, 1) = [5]3.

2We write a1 for xa1 , ... .
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Table and table equations - single columns - for Q = (5)

•v5 a1 //

a2
--

a3

**

a4

))•v4 a1 // •v3 a1 // •v2 a1 // •v1

T (Q) and E(Q) for Q = (5).
Here B = JQ : a1 = 1, a2 = a3 = a4 = 0.

T (Q) E(Q)

(5) −
[5]2 = (3, 2) a1

[5]3 = (2, 2, 1) a1, a2
[5]4 = (2, 13) a1, a2, a3
[5]5 = (15) a1, a2, a3, a4

A ∈ NB

0 a1 a2 a3 a4
0 0 a1 a2 a3
0 0 0 a1 a2
0 0 0 0 a1
0 0 0 0 0
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•v5 a1 //

g ′
1

**

a2
--

a3

++

a4

**

g ′
2

,,

•v4 a1 // • // •v2 // •v1

•v7 b1
//

g2

22

•v6
g1

44

Figure : Diagram of DQ and maps for Q = (5, 2).

Example (Equations for table loci: T (Q),Q = (5, 2))

T =

(
(5, 2) (5, [2]2)

(4, [3]2) (4, [3]3)

)
; E =

(
− b1

a1 a1,Q

)
where Q =

∣∣∣∣ a2 g1
g ′1 b1

∣∣∣∣ .
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When a1 = 0, rest general, then PA = (4, 2, 1).

When a1 = 0 but Q 6= 0 then ker(A) = 〈v1, v2, g1v3 − a2v6〉.

Equations a1,Q for P2,2((5, 2)) = (4, 1, 1, 1)

•v4

g ′
1

**

a2
--•v3 •v2

•v7 b1
//

g1

44

•v6

Qmatrix =

 ∗ v4 v7

v2 a2 g1
v6 g ′1 b1

 .

ker(A) = 〈v1, v2, g1v3 − a2v6, g1v4 − a2v7 + · · · 〉, so kA = 4.
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Example (Table T (Q) and Table Loci E(Q) for Q = (6, 3))

Let Q = (6, 3).

T (Q) =

(
(6, 3) (6, [3]2) (6, [3]3)

(5, [4]2 (5, [4]3) (5, [4[4)

)

E(Q) =

(
− b1 b1,Q

′

a1 a1,Q1 a1,Q1,Q2

)
where Q′ =

∣∣∣∣ a1 g1
g ′1 b2

∣∣∣∣ , Q1 =

∣∣∣∣ a2 g1
g ′1 b1

∣∣∣∣ ,
Q2 =

∣∣∣∣ a2 g1
g ′2 b2

∣∣∣∣+

∣∣∣∣ a3 g2
g ′1 b1

∣∣∣∣
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The matrix MA over R = k[t]/(tu) and Diagonalization Loci.

We encode the matrix A for Q = (u, u − r) in the following 2× 2
matrix MA over R = k[t]/(tu), after the Ljubljana school
(T. Košir and B. Sethuranam) variation á la M. Boij et al.

MA =

(
a g

htr b

)
Here, generically, a = a1t + a2t2 + · · · , b = b1t + b2t2 + · · ·
h = h0 + h1t + · · · , and g = g0 + g1t + · · · .
We have dimk Ker(MA) = kA. For a particular choice of
coefficients, we may try to row-reduce MA over R to echelon form

M′A =

(
uts1 g

0 u′ts2

)
where u, u′ are units. (1)
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Definition

Fix a stable Q = (u, u − r). Let (s1, s2) satisfy

1 ≤ s1 ≤ r − 1 and 1 ≤ s2 ≤ u − r . (2)

The diagonalization locus Ks1,s2(Q) = {A ∈ NB ,B = JQ s.t.

MA
∼=
(

uts1 g
0 u′ts2

)
} with u, u′ units in R.

Lemma

A general enough A ∈ Ks1,s2(Q) satisfies kA = s1 + s2, so PA has
s1 + s2 parts.

Conjecture.

i For pairs (s1, s2) satisfying (2) the rank of each power Ai of a
general enough A ∈ Ks1,s2 is determined by the pair (s1, s2).

ii The table locus Z(Pij) is just the diagonalization locus Xs1,s2 .
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We use X2,1 in a special case to determine P2,1.

Example

The locus Z(P2,1) for Q = (6, 3) and K2,1(Q).
When a1 = 0 and a2, b1, g , h are generic we have

MA =

(
ut2 g
ht3 u′t

)
with u, u′ units. Then we have

MA
∼=
(

ut2 g
0 u′′t

)
, so this is in the locus K2,1, where

kA = 2 + 1 = 3. Now consider the dimension kA2 of the kernel of
A2. For P2,1(Q) = (5, 2, 2) we expect kA2 = 6, kA3 = 7, kA4 = 8
and A5 = 0.

We have M2
A =

(
ght3 + u2t4 gu′t + gut2

hu′t4 + hut5 u′2t2 + ght3

)
.

The determinant formed from the lowest order terms is zero, so in

row-reducing MA2 we obtain orders

(
3 1
−∞ 3

)
, giving kA2 = 6. It

is easy to check kA3 = 7, kA4 = 8,A5 = 0.
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Set up for the Box equation conjecture.
Let Q = (q1, q2, q3) be a stable partition: so
q1 > q2 + 1, q2 > q3 + 1.
Set δ1 = q1 − q2, δ2 = q2 − q3, δ3 = q3 − (−1).
The box entries Ps1,s2,s3 (whatever they may be) are labelled by the
triples (s1, s2, s3) satisfying

1 ≤ s1 ≤ δ1 − 1, 1 ≤ s2 ≤ δ2 − 1, 1 ≤ s3 ≤ δ3 − 1. (3)

We denote by Us1,s2,s3(Q) the locus in UB ,B = JQ of matrices A
having Jordan type PA = Ps1,s2,s3 , and by Zs1,s2,s3(Q) its closure in
UQ . Let R = k[t]/(tq1). The matrix MA is the 3× 3 analogue of
the 2× 2 case, so we define the diagonalization loci Ks1,s2,s3 .
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We propose

Box Equations Conjecture. Assume that the triple (s1, s2, s3) for
A ∈ UQ satisfies (3). Then

i. The locus Us1,s2,s3(Q) = Ks1,s2,s3(Q).

ii. For A ∈ Ks1,s1,s3(Q) the triple (s1, s2, s3) determines the rank of
each power of A, hence determines a partition PA = PKs1,s2,s3 .

iii. If PA = PKs1,s2,s3(Q) then Q(PA) = Q.

iv. The set {PKs1,s2,s3(Q)} such that (s1, s2, s3) satisfies (3) is the
complete set of partitions P such that Q(P) = Q.

Here (i.) and (ii.) together assert that Ps1,s2,s3 = PKs1,s2,s3 .
This conjecture is analogous to the Table Conjecture and the
Ranks of Powers Conjecture for stable partitions Q having two
parts.
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Lemma (in process)

The diagonalization loci Ks1,s2 , and for Q with three parts, Ks1,s2,s3

for permissible triples (s1, s2, s3) are complete intersections defined
by specific irreducible equations, whose format and degrees are
known.

Conclusion There are many algebraic and combinatorial problems
arising from considering two commuting nilpotent matrices!

Thank you!
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