Logarithmic differential forms and questions of residues.

Michel Granger
University of Angers, France

Differential and combinatorial aspects of singularities.
Kaiserslautern, August 3-7, 2015

Joint work with Mathias Schulze and part of Phd work of Delphine Pol.
References

- Delphine Pol, Logarithmic differential forms along complete intersection, work in progress.
Contents

1. Basic definitions.
2. Logarithmic residues and duality.
3. Normal crossing conditions
4. Residues along plane curves
5. The complete intersection case.
I. Basic definitions.

Let $D \subset S = (\mathbb{C}^n, 0)$ be a reduced effective divisor, $\mathcal{I}_D = \mathcal{O}_S \cdot h$ its defining ideal. We set:

$$\Theta_S := \text{Der}(\mathcal{O}_S) = \text{Hom}_{\mathcal{O}_S}(\Omega^1_S, \mathcal{O}_S),$$

$$\Omega^p_S(\log D) := \{ \omega \in \Omega^p_S(D) \mid d\omega \in \Omega^{p+1}_S(D) \},$$

$$\text{Der}(-\log D) := \{ \delta \in \Theta_S \mid dh(\delta) \in \mathcal{I}_D \}.$$
I. Basic definitions.

Let $D \subset S = (\mathbb{C}^n, 0)$ be a reduced effective divisor,
$I_D = \mathcal{O}_S \cdot h$ its defining ideal. We set:

$$\Theta_S := \text{Der}_\mathbb{C}(\mathcal{O}_S) = \text{Hom}_{\mathcal{O}_S}(\Omega^1_S, \mathcal{O}_S), \quad \Omega^p_S(D) = \Omega^p_S \cdot \frac{1}{h}$$
I. Basic definitions.

Let $D \subset S = (\mathbb{C}^n, 0)$ be a reduced effective divisor, $\mathcal{I}_D = \mathcal{O}_S \cdot h$ its defining ideal. We set:

$$\Theta_S := \text{Der}_\mathbb{C}(\mathcal{O}_S) = \text{Hom}_{\mathcal{O}_S}(\Omega^1_S, \mathcal{O}_S), \quad \Omega^p_S(D) = \Omega^p_S \cdot \frac{1}{h}$$

Definition (K. Saito)

$$\Omega^p(\log D) := \{ \omega \in \Omega^p_S(D) \mid d\omega \in \Omega^{p+1}_S(D) \}$$

$$\text{Der}(- \log D) := \{ \delta \in \Theta_S \mid dh(\delta) \in \mathcal{I}_D \}$$
I. Basic definitions.

Let $D \subset S = (\mathbb{C}^n, 0)$ be a reduced effective divisor, $\mathcal{I}_D = \mathcal{O}_S \cdot h$ its defining ideal. We set:

$$\Theta_S := \text{Der}_\mathbb{C}(\mathcal{O}_S) = \text{Hom}_{\mathcal{O}_S}(\Omega^1_S, \mathcal{O}_S), \quad \Omega^p_S(D) = \Omega^p_S \cdot \frac{1}{h}$$

Definition (K. Saito)

$$\Omega^p(\log D) := \{\omega \in \Omega^p_S(D) \mid d\omega \in \Omega^{p+1}_S(D)\}$$

$$\text{Der}(-\log D) := \{\delta \in \Theta_S \mid dh(\delta) \in \mathcal{I}_D\}$$

All these modules are coherent and reflexive. In particular

$$\Omega^1(\log D) = \text{Hom}_{\mathcal{O}_S}(\text{Der}(-\log D), \mathcal{O}_S), \quad \text{and}$$

$$\text{Der}(-\log D) = \text{Hom}_{\mathcal{O}_S}(\Omega^1(\log D), \mathcal{O}_S)$$
Let $\Sigma = \text{Sing}(D)$, with $\mathcal{O}_\Sigma = \mathcal{O}_S/(J(h), h) = \mathcal{O}_D/\mathcal{J}_D$. We have the following exact sequences:
Let $\Sigma = \text{Sing}(D)$, with $\mathcal{O}_\Sigma = \mathcal{O}_S/(J(h), h) = \mathcal{O}_D/\mathcal{I}_D$. We have the following exact sequences:

\[(1.1) \quad 0 \rightarrow \text{Der}(-\log D) \rightarrow \Theta_S \rightarrow^{dh} \mathcal{I}_D \rightarrow 0 \]
Let $\Sigma = \text{Sing}(D)$, with $\mathcal{O}_\Sigma = \mathcal{O}_S/(J(h), h) = \mathcal{O}_D/\mathcal{I}_D$. We have the following exact sequences:

(1.1) \[0 \rightarrow \text{Der}(-\log D) \rightarrow \Theta_S \xrightarrow{dh} \mathcal{I}_D \rightarrow 0 \]

(1.2) \[0 \rightarrow \text{Der}(-\log D) \rightarrow \Theta_S \oplus \mathcal{O}_S \xrightarrow{dh,-h} \mathcal{O}_S \rightarrow \mathcal{O}_\Sigma \rightarrow 0 \]

In sequence (1.2) the first arrow is: $\delta \mapsto (\delta, \delta(h)/h)$
Let $\Sigma = \text{Sing}(D)$, with $\mathcal{O}_\Sigma = \mathcal{O}_S/(J(h), h) = \mathcal{O}_D/\mathcal{I}_D$. We have the following exact sequences:

(1.1) \hspace{1cm} 0 \longrightarrow \text{Der}(−\log D) \longrightarrow \Theta_S \overset{dh}{\longrightarrow} \mathcal{I}_D \longrightarrow 0

(1.2) \hspace{1cm} 0 \longrightarrow \text{Der}(−\log D) \longrightarrow \Theta_S \oplus \mathcal{O}_S \overset{dh,−h}{\longrightarrow} \Theta_S \longrightarrow \mathcal{O}_\Sigma \longrightarrow 0

In sequence (1.2) the first arrow is: $\delta \mapsto (\delta, \delta(h)/h)$

Definition

The divisor D is free iff $\text{Der}(−\log D)$ or alternatively $\Omega^1(\log D)$ is a free module.

Here are two characterisations of freeness.
Theorem (Saito criterion)

The divisor D is free iff there are $\delta_1, \cdots, \delta_n \in \text{Der}(-\log D)$ such that

\[
\det(\delta_1, \cdots, \delta_n) = uh
\]

*with u a unit. The n-uples $\delta_1, \cdots, \delta_n$ with this property are the generating families of $\text{Der}(-\log D)$.***
Theorem (Saito criterion)

The divisor D is free iff there are $\delta_1, \cdots, \delta_n \in \text{Der}(-\log D)$ such that

$$\det(\delta_1, \cdots, \delta_n) = uh$$

with u a unit. The n-uples $\delta_1, \cdots, \delta_n$ with this property are the generating families of $\text{Der}(-\log D)$.

Theorem (Terao in qh case, Aleksandrov.)

The following three conditions are equivalent:

1. The divisor D is free.
2. \mathcal{I}_D is Cohen Macaulay (of dimension $n - 1$).
3. \mathcal{O}_Σ is Cohen Macaulay (of dimension $n - 2$).

The proof essentially uses the Auslander-Buchsbaum formula.
II. Logarithmic residues

Saito proves that $\omega \in \Omega^p(\log D)$ iff there is $g \in \mathcal{O}_S$ non zero divisor in \mathcal{O}_D and there are holomorphic forms ξ, η such that:

$$g\omega = \frac{dh}{h} \wedge \xi + \eta,$$
Saito proves that \(\omega \in \Omega^p(\log D) \) iff there is \(g \in \mathcal{O}_S \) non zero divisor in \(\mathcal{O}_D \) and there are holomorphic forms \(\xi, \eta \) such that:

\[
g\omega = \frac{dh}{h} \wedge \xi + \eta,
\]

Definition

The residue of \(\omega \) is the meromorphic \((q - 1)\)-form on \(D \) or equivalently on the normalization \(\tilde{D} \):

\[
\rho^p_D(\omega) := \frac{\xi}{g}|_D \in \Omega^{p-1}_D \otimes Q(\mathcal{O}_D) = \Omega^{p-1}_\tilde{D} \otimes Q(\mathcal{O}_{\tilde{D}})
\]
II. Logarithmic residues

Saito proves that $\omega \in \Omega^p(\log D)$ iff there is $g \in \mathcal{O}_S$ non zero divisor in \mathcal{O}_D and there are holomorphic forms ξ, η such that:

$$g \omega = \frac{dh}{h} \wedge \xi + \eta,$$

Definition

The residue of ω is the meromorphic $(q-1)$-form on D or equivalently on the normalization \tilde{D}:

$$\rho^p_D(\omega) := \frac{\xi}{g}\big|_D \in \Omega^{p-1}_D \otimes Q(\mathcal{O}_D) = \Omega^{p-1}_{\tilde{D}} \otimes Q(\mathcal{O}_{\tilde{D}})$$

We set $\rho^1_D = \rho_D$, $\mathcal{R}_D := \rho_D(\Omega^1(\log D)) \subset Q(\mathcal{O}_D)$.
Properties of \mathcal{R}_D.

Proposition

We have $\mathcal{O}_D \subset \mathcal{R}_D$ and there is an exact sequence:

$$0 \to \Omega^1_S \to \Omega^1(\log D) \xrightarrow{\rho_D} \mathcal{R}_D \to 0.$$
Properties of \mathcal{R}_D.

Proposition

We have $\mathcal{O}_D \subset \mathcal{R}_D$ and there is an exact sequence:

\[
0 \rightarrow \Omega_S^1 \rightarrow \Omega^1(\log D) \xrightarrow{\rho_D} \mathcal{R}_D \rightarrow 0.
\]

By dualizing over \mathcal{O}_S we obtain the following result:

Proposition (G, M. Schulze)

1) There is an exact sequence

\[
0 \rightarrow \text{Der}(-\log D) \rightarrow \Theta_S \xrightarrow{\sigma_D} \mathcal{R}_D^\vee \rightarrow \text{Ext}^1_{\mathcal{O}_S}(\Omega^1(\log D), \mathcal{O}_S)
\]

2) The image of σ_D is $\mathcal{J}_D \subset \mathcal{R}_D^\vee$ and we always have $\mathcal{R}_D = \mathcal{J}_D^\vee$.

3) When D is free $\mathcal{J}_D = \mathcal{R}_D^\vee$.
Ideas for the proof. The presence of R_D^\vee comes from the change of ring formula:

$$R_D^\vee := \text{Hom}_{O_D}(R_D, O_D) = \text{Hom}_{O_D}(R_D, \text{Ext}^1_{O_S}(O_D, O_S))$$

$$= \text{Ext}^1_{O_S}(R_D, O_S)$$
Ideas for the proof. The presence of \mathcal{R}^\vee_D comes from the *change of ring formula*:

$$\mathcal{R}^\vee_D := \text{Hom}_{\mathcal{O}_D}(\mathcal{R}_D, \mathcal{O}_D) = \text{Hom}_{\mathcal{O}_D}(\mathcal{R}_D, \text{Ext}^1_{\mathcal{O}_S}(\mathcal{O}_D, \mathcal{O}_S))$$

$$= \text{Ext}^1_{\mathcal{O}_S}(\mathcal{R}_D, \mathcal{O}_S)$$

The equality $\sigma_D(\delta)(\rho) = \langle \delta, h \rangle \cdot \rho$ is obtained by studying a diagram built on the complex

$$\text{Hom}_{\mathcal{O}_S}(\Omega^1_S \hookrightarrow \Omega^1(\log D), h: \mathcal{O}_S \rightarrow \mathcal{O}_S).$$
The \mathcal{O}_D submodules \mathcal{I}_D, \mathcal{R}_D, \mathcal{O}_D of $Q(\mathcal{O}_D)$ are fractional ideals, i.e. contain a non zero divisor.

By a result of De Jong and Van Straten, duality $I \rightarrow I^\vee$ preserves fractional ideals and is an involution on maximal CM ones.

This is the case for the conductor $\mathcal{C}_D := \mathcal{O}_D^\vee$.
The \mathcal{O}_D submodules \mathcal{I}_D, \mathcal{R}_D, $\mathcal{O}_{\tilde{D}}$ of $\mathcal{Q}(\mathcal{O}_D)$ are fractional ideals, i.e. contain a non zero divisor.

By a result of De Jong and Van Straten, duality $I \rightarrow I^\vee$ preserves fractional ideals and is an involution on maximal CM ones.

This is the case for the conductor $\mathcal{C}_D := \mathcal{O}_{\tilde{D}}^\vee$

We may summarize the situation as follows

- We obtain a chain of fractional ideals

$$\mathcal{I}_D \subseteq \mathcal{R}_D^\vee \subseteq \mathcal{C}_D \subseteq \mathcal{O}_D \subseteq \mathcal{O}_{\tilde{D}} \subseteq \mathcal{R}_D$$
The O_D submodules I_D, R_D, O_D of $Q(O_D)$ are fractional ideals, i.e. contain a non zero divisor.

By a result of De Jong and Van Straten, duality $I \rightarrow I^\vee$ preserves fractional ideals and is an involution on maximal CM ones.

This is the case for the conductor $C_D := O_D^\vee$

We may summarize the situation as follows

- We obtain a chain of fractional ideals
 \[I_D \subseteq R_D^\vee \subseteq C_D \subseteq O_D \subseteq O_D^\vee \subseteq R_D \]

- If D is free, then $I_D = R_D^\vee$ as fractional ideals. In that case:
 \[R_D = O_D^\vee \iff I_D = C_D. \]

We call the condition $R_D = O_D^\vee$ the normal crossing condition.

The starting point is a result of K. Saito:
Theorem (Saito)

For a divisor D in a complex manifold S, consider the following conditions:

(A) the local fundamental groups of the complement $S \setminus D$ are Abelian;

(B) in codimension one, that is, outside of an analytic subset of codimension at least 2 in D, D is a normal crossing;

(C) the residue of any logarithmic 1-form along D is a weakly holomorphic function on D.

Then the implications $(A) \Rightarrow (B) \Rightarrow (C)$ hold true.
In his 1980 paper Saito asked for the converse implications:
In his 1980 paper Saito asked for the converse implications:

Theorem (Lê Dũng Tráng and K.Saito 1984)

The implication \((A) \iff (B)\) in Theorem 3.1 holds true.
In his 1980 paper Saito asked for the converse implications:

Theorem (Lê Dung Tràng and K.Saito 1984)

The implication $(A) \iff (B)$ in Theorem 3.1 holds true.

Theorem (G, Mathias Schulze)

The implication $(B) \iff (C)$ in Theorem 3.1 holds true: if the residue of any logarithmic 1-form along D is a weakly holomorphic function on D then D is a normal crossing in codimension one.
Outline of the proof:

- Let $\varphi : Y \to X$ be a morphism. Then

 $$\Omega_{Y/X} = 0 \iff \varphi \text{ is an immersion}.$$
Outline of the proof:

- Let $\varphi : Y \to X$ be a morphism. Then
 \[\Omega_{Y/X} = 0 \iff \varphi \text{ is an immersion.} \]

- In codimension 1, D is free, \tilde{D} is smooth.
Outline of the proof:

- Let $\varphi : Y \to X$ be a morphism. Then
 \[\Omega_{Y/X} = 0 \iff \varphi \text{ is an immersion.} \]

- In codimension 1, D is free, \tilde{D} is smooth.

- Let $\mathcal{R}_\pi := F^0(\Omega_{\tilde{D}/D})$ be the ramification ideal.
 By a formula of Ragni Piene:
 \[\mathcal{C}_D \mathcal{R}_\pi = \mathcal{I}_D \mathcal{O}_{\tilde{D}} \]
Outline of the proof:

- Let \(\varphi : Y \to X \) be a morphism. Then
 \[\Omega_{Y/X} = 0 \iff \varphi \text{ is an immersion.} \]

- In codimension 1, \(D \) is free, \(\tilde{D} \) is smooth.

- Let \(\mathcal{R}_\pi := F^0(\Omega_{\tilde{D}/D}) \) be the ramification ideal.

 By a formula of Ragni Piene:
 \[C_D \mathcal{R}_\pi = \mathcal{I}_D \mathcal{O}_{\tilde{D}} \]

- For a free \(D \) it follows:
 \[\mathcal{R}_D = \mathcal{O}_{\tilde{D}} \implies C_D = \mathcal{I}_D \implies \mathcal{R}_\pi = \mathcal{O}_{\tilde{D}} \implies \Omega_{\tilde{D}/D} = 0 \]

Then \(\tilde{D} \) and \(D \) have smooth components \(\tilde{D}_i \xrightarrow{\sim} D_i \).
Outline of the proof:

- Let $\varphi : Y \to X$ be a morphism. Then
 \[\Omega_{Y/X} = 0 \iff \varphi \text{ is an immersion.} \]

- In codimension 1, D is free, \tilde{D} is smooth.

- Let $R_{\pi} := F^0(\Omega_{\tilde{D}/D})$ be the ramification ideal. By a formula of Ragni Piene: $C_D R_{\pi} = \mathcal{J}_D \mathcal{O}_{\tilde{D}}$

- For a free D it follows:
 \[
 R_D = \mathcal{O}_{\tilde{D}} \implies C_D = \mathcal{J}_D \implies R_{\pi} = \mathcal{O}_{\tilde{D}} \implies \Omega_{\tilde{D}/D} = 0
 \]
 Then \tilde{D} and D have smooth components $\tilde{D}_i \xrightarrow{\sim} D_i$.

- Finally in codimension one the N.C. condition becomes $R_D = \bigoplus_i \mathcal{O}_{D_i}$, a case where the result is known by Saito.
Characterization of normal crossing divisors

A normal crossing divisor is free and \mathcal{I}_D is a radical ideal of \mathcal{O}_D. A partial converse is:
Characterization of normal crossing divisors

A normal crossing divisor is free and \mathcal{I}_D is a radical ideal of \mathcal{O}_D. A partial converse is:

Theorem (E. Faber, G and M. Schulze.)

For a free divisor with smooth normalization, any of the conditions

- The ideal $\mathcal{I}_h = (h'_{x_1}, \cdots, h'_{x_n}) \subset \mathcal{O}_S$ is a radical ideal
- Any of the equivalent conditions (A), (B), (C),
- The Jacobian ideal \mathcal{I}_D is radical.

imply that D is a normal crossing divisor.
A normal crossing divisor is free and \mathcal{I}_D is a radical ideal of \mathcal{O}_D. A partial converse is:

Theorem (E. Faber, G and M. Schulze.)

For a free divisor with smooth normalization, any of the conditions

- The ideal $\mathcal{I}_h = (h'_{x_1}, \ldots, h'_{x_n}) \subset \mathcal{O}_S$ is a radical ideal
- Any of the equivalent conditions (A), (B), (C),
- The Jacobian ideal \mathcal{I}_D is radical.

imply that D is a normal crossing divisor.

Question (E. Faber) In i) or iii), can one get rid of the smoothness hypothesis?

Michel Granger University of Angers, France

Logarithmic differential forms and questions of residues.
Going further.

- When D does not satisfy (A), (B) or (C), How to determine $R_D \nsubseteq O_D$
Going further.

- When D does not satisfy (A), (B) or (C), How to determine $R_D \not\subset \mathcal{O}_D$
- Case of curves: Detailed answer in terms of the semigroup of multivaluations (or values). Delphine Pol.
Going further.

- When D does not satisfy (A), (B) or (C), How to determine $R_D \not\subset O_D$

Case of curves: Detailed answer in terms of the semigroup of multivaluations (or values). Delphine Pol.

- There is a notion of multiresidues along a complete intersection due to Aleksandrov and Tsikh.
Going further.

- When D does not satisfy (A), (B) or (C), How to determine $\mathcal{R}_D \not\subseteq \mathcal{O}_\tilde{D}$

Case of curves: Detailed answer in terms of the semigroup of multivaluations (or values). Delphine Pol.

- There is a notion of multiresidues along a complete intersection due to Aleksandrov and Tsikh.
- Description of the dual residue module \mathcal{R}^\vee_C. Results similar to the above for curves, and other examples (D. Pol).
Going further.

- When D does not satisfy (A), (B) or (C), How to determine $\mathcal{R}_D \not\subseteq \mathcal{O}_\bar{D}$

 Case of curves: Detailed answer in terms of the semigroup of multivaluations (or values). Delphine Pol.

- There is a notion of multiresidues along a complete intersection due to Aleksandrov and Tsikh.
 - Description of the dual residue module \mathcal{R}_C^\vee. Results similar to the above for curves, and other examples (D. Pol).
 - A notion of freeness (G, M. Schulze), and a cohomological characterization of freeness, for multivector fields (G, Schulze) and forms (D. Pol).
Going further.

- When D does not satisfy (A), (B) or (C), How to determine $\mathcal{R}_D \supsetneq \mathcal{O}_\tilde{D}$
 Case of curves: Detailed answer in terms of the semigroup of multivaluations (or values). Delphine Pol.

- There is a notion of multiresidues along a complete intersection due to Aleksandrov and Tsikh.
 - Description of the dual residue module $\mathcal{R}_{\mathcal{C}}$. Results similar to the above for curves, and other examples (D. Pol).
 - A notion of freeness (G, M. Schulze), and a cohomological characterization of freeness, for multivector fields (G, Schulze) and forms (D. Pol).
 - Analogue of the normal crossing condition has been studied by M. Schulze.
Semigroup of a curve.

Let \((D, 0) = \bigcup_{i=1}^{p} D_i \subset (S, 0)\) be a reduced curve, with normalization:

\[
\mathcal{O}_D \rightarrow \mathcal{O}_{\tilde{D}} \simeq \mathbb{C}\{t_1\} \oplus \cdots \oplus \mathbb{C}\{t_p\}.
\]
Semigroup of a curve.

Let \((D, 0) = \bigcup_{i=1}^{p} D_i \subset (S, 0)\) be a reduced curve, with normalization:

\[
\mathcal{O}_D \hookrightarrow \mathcal{O}_{\tilde{D}} \cong \mathbb{C}\{t_1\} \oplus \cdots \oplus \mathbb{C}\{t_p\}.
\]

The value of \(g \in \mathbb{Q}(\mathcal{O}_D)\), is the \(p\)-uple of valuations w.r. to \(t_j\)'s

\[
\text{val}(g) = (\text{val}_1(g), \cdots, \text{val}_p(g)) \in (\mathbb{Z} \cup \{\infty\})^p.
\]

Let \(\text{val}(I) \subset \mathbb{Z}^p\) be the set of values on non zero divisors in \(I\).
Semigroup of a curve.

Let \((D, 0) = \bigcup_{i=1}^{p} D_i \subset (S, 0)\) be a reduced curve, with normalization:

\[
\mathcal{O}_D \hookrightarrow \mathcal{O}_{\tilde{D}} \cong \mathbb{C}\{t_1\} \oplus \cdots \oplus \mathbb{C}\{t_p\}.
\]

The value of \(g \in Q(\mathcal{O}_D)\), is the \(p\)-uple of valuations w.r. to \(t_j\)’s

\[
\text{val}(g) = (\text{val}_1(g), \cdots, \text{val}_p(g)) \in (\mathbb{Z} \cup \{\infty\})^p.
\]

Let \(\text{val}(I) \subset \mathbb{Z}^p\) be the set of values on non zero divisors in \(I\).

Definition

The semigroup of \(D\) is \(\Gamma = \text{val}(\mathcal{O}_D) \subset \mathbb{N}^p\).

There is \(\gamma \in \mathbb{N}^p\) with \(\text{val}(\mathcal{C}_D) = (\gamma_1, \cdots, \gamma_p) + \mathbb{N}^p\).
Let \((D, 0) = \bigcup_{i=1}^{p} D_i \subset (S, 0)\) be a reduced curve, with normalization:

\[\mathcal{O}_D \hookrightarrow \mathcal{O}_{\tilde{D}} \simeq \mathbb{C}\{t_1\} \oplus \cdots \oplus \mathbb{C}\{t_p\}. \]

The value of \(g \in Q(\mathcal{O}_D)\), is the \(p\)-uple of valuations w.r. to \(t_j\)'s

\[\text{val}(g) = (\text{val}_1(g), \cdots, \text{val}_p(g)) \in (\mathbb{Z} \cup \{\infty\})^p. \]

Let \(\text{val}(I) \subset \mathbb{Z}^p\) be the set of values on non zero divisors in \(I\).

Definition

The semigroup of \(D\) is \(\Gamma = \text{val}(\mathcal{O}_D) \subset \mathbb{N}^p\).

There is \(\gamma \in \mathbb{N}^p\) with \(\text{val}(\mathcal{O}_D) = (\gamma_1, \cdots, \gamma_p) + \mathbb{N}^p\).

More generally each fractional ideal \(I \subset Q(\mathcal{O}_D)\) has a conductor

\[\nu \in \mathbb{Z}^p, \text{val}(I) \supset \nu + \mathbb{N}^p \]
Theorem (Delgado)

The ring \mathcal{O}_D is Gorenstein iff the semi group Γ has the following property:

$$\forall v \in \mathbb{Z}^p, v \in \Gamma \iff \Delta(\gamma - v - (1, \cdots, 1), \mathcal{O}_D) = \emptyset$$

Here we set $\Delta(\alpha, \text{val}(\mathcal{O}_D)) = \text{val}(\mathcal{O}_D) \cap \alpha + \Delta_{n-1}(\mathbb{R}_+^n)$, $\Delta_{n-1}(\mathbb{R}_+^n)$ is the $n-1$-dimensional part of the upper quadrant $\mathbb{R}_+^n \supset \mathbb{N}_+^n$.

A symmetry result.
A symmetry result.

Theorem (Delgado)

The ring \mathcal{O}_D is Gorenstein iff the semi group Γ has the following property:

$$\forall \nu \in \mathbb{Z}^p, \nu \in \Gamma \iff \Delta(\gamma - \nu - (1, \cdots, 1), \mathcal{O}_D) = \emptyset$$

Here we set $\Delta(\alpha, \text{val}(\mathcal{O}_D)) = \text{val}(\mathcal{O}_D) \cap \alpha + \Delta_{n-1}(\mathbb{R}^n_+)$, $\Delta_{n-1}(\mathbb{R}^n_+)$ is the $n-1$-dimensional part of the upper quadrant $\mathbb{R}^n_+ \supset \mathbb{N}^n_+$.

Let us restrict to plane curves $D \subset (\mathbb{C}^2, 0)$. We would like to extend this result to a relation between $\text{val}(\mathcal{I}_D)$ and $\text{val}(\mathcal{R}_D)$.

Theorem (D. Pol)

Let D be a plane curve. Then the set of values of the module of logarithmic residues is determined by \mathcal{I}_D:

$$v \in \text{val}(\mathcal{R}_D) \iff \Delta(\gamma - v - (1, \cdots, 1), \mathcal{I}_D) = \emptyset$$
Theorem (D. Pol)

Let D be a plane curve. Then the set of values of the module of logarithmic residues is determined by \mathcal{I}_D:

$$v \in \text{val}(\mathcal{R}_D) \iff \Delta(\gamma - v - (1, \cdots, 1), \mathcal{I}_D) = \emptyset$$

Remark: The same result holds in a more general context for any Gorenstein reduced curve, and fractional ideals I, I^\vee. In particular for a complete intersection curve C, we still have $\mathcal{R}_C, \mathcal{I}_C$ mutually dual. Here \mathcal{R}_C is as defined by Aleksandrov and Tsikh.
The proof in the irreducible case is fairly direct.
The proof in the irreducible case is fairly direct. In general we easily get the first part of the equivalence

$$\text{val}(\mathcal{H}_D) \subset \mathcal{V} := \{ v \mid \Delta(\gamma - v - (1, \cdots, 1), \mathcal{J}_D) = \emptyset \}$$
The proof in the irreducible case is fairly direct. In general we easily get the first part of the equivalence

\[\text{val}(\mathcal{R}_D) \subset \mathcal{V} := \{ v \mid \Delta(\gamma - v - (1, \cdots, 1), \mathcal{I}_D) = \emptyset \} \]

The converse (chasing all possible \(v \in \mathcal{V} \setminus \text{val}(\mathcal{R}_D) \)) is much harder.

D. Pol uses a combinatorial calculation of the dimensions of \(\mathcal{R}_D / \mathcal{O}_\tilde{D} \) or of \(\mathcal{I}_D / \mathcal{C}'_D \) quotient of \(\mathcal{I}_D \) by its conductor. The relationship with the set \(\mathcal{V} \subset \mathbb{Z}^p \) is then the central point.
The proof in the irreducible case is fairly direct.
In general we easily get the first part of the equivalence

\[
\text{val}(\mathcal{R}_D) \subset \mathcal{V} := \{ v \mid \Delta(\gamma - v - (1, \cdots, 1), \mathcal{I}_D) = \emptyset \}
\]

The converse (chasing all possible \(v \in \mathcal{V} \setminus \text{val}(\mathcal{R}_D) \)) is much harder.

D. Pol uses a combinatorial calculation of the dimensions of \(\mathcal{R}_D / \mathcal{O}_\tilde{D} \) or of \(\mathcal{I}_D / \mathcal{C}_D' \) quotient of \(\mathcal{I}_D \) by its conductor. The relationship with the set \(\mathcal{V} \subset \mathbb{Z}^p \) is then the central point.
We give a picture for the case of \(f = (x^2 - y^3)(x^4 - y^3) \), \(\mu = 19 \), \(\delta = 10 \), \(\tau = 17 \), \(\gamma = (8, 12) \), \(\gamma \mathcal{I} = (12, 20) \).
Figure: Semigroup of $\mathcal{J}(D)$
Basic definitions.
Logarithmic residues and duality.
Normal crossing conditions
Residues along plane curves
The complete intersection case.

Figure: Multi-values of \mathcal{R}_D
An example.

Notice that $\dim \mathcal{R}_D/\mathcal{O}_D = \dim \mathcal{O}_D/J_D = \tau$ the Tjurina number and $\dim \mathcal{R}_D/\mathcal{O}_D = \tau - \delta$.
An example.

Notice that $\dim \mathcal{R}_D / \mathcal{O}_D = \dim \mathcal{O}_D / \mathcal{I}_D = \tau$ the Tjurina number and $\dim \mathcal{R}_D / \mathcal{O}_D = \tau - \delta$.

Contrary to Γ, $\text{val}(\mathcal{R}_D)$ varies in the μ-constant stratum $S \subset \mathbb{C}^\mu$ of a semiuniversal unfolding $F : \mathbb{C}^2 \times \mathbb{C}^\mu \to \mathbb{C}$, $F(x, y, s) = f(x, y) + \sum_{1 \leq k \leq \mu} t^k m_k(x, y)$.
An example.

Notice that $\dim \mathcal{R}_D/\mathcal{O}_D = \dim \mathcal{O}_D/\mathcal{I}_D = \tau$ the Tjurina number and $\dim \mathcal{R}_D/\mathcal{O}_D = \tau - \delta$.

Contrary to Γ, $\text{val}(\mathcal{R}_D)$ varies in the μ-constant stratum $S \subset \mathbb{C}^\mu$ of a semiuniversal unfolding $F : \mathbb{C}^2 \times \mathbb{C}^\mu \to \mathbb{C}$, $F(x, y, s) = f(x, y) + \sum_{1 \leq k \leq \mu} t^k m_k(x, y)$

In fact τ-constant deformations are adapted to residue calculations as flat deformations of f, f'_x, f'_y:

\[\mathcal{O}^2 \times \mathbb{C}^\mu \to \mathbb{C}, F(x, y, s) = f(x, y) + \sum_{1 \leq k \leq \mu} t^k m_k(x, y) \]
An example.

Notice that \(\dim \mathcal{R}_D/\mathcal{O}_D = \dim \mathcal{O}_D/\mathcal{I}_D = \tau \) the Tjurina number and \(\dim \mathcal{R}_D/\mathcal{O}_D = \tau - \delta \).

Contrary to \(\Gamma \), \(\mathrm{val}(\mathcal{R}_D) \) varies in the \(\mu \)-constant stratum \(S \subset \mathbb{C}^\mu \) of a semiuniversal unfolding \(F : \mathbb{C}^2 \times \mathbb{C}^\mu \to \mathbb{C} \), \(F(x, y, s) = f(x, y) + \sum_{1 \leq k \leq \mu} t^k m_k(x, y) \)

In fact \(\tau \)-constant deformations are adapted to residue calculations as flat deformations of \(f, f'_x, f'_y \):

\[\text{Proposition} \]

The partition of \(S \) by \(\mathrm{val}(\mathcal{R}_D) \) is a partition into analytic locally closed subsets refining the \(\tau \)-constant strata.
An example.

Notice that \(\dim \mathcal{R}_D/\mathcal{O}_D = \dim \mathcal{O}_D/\mathcal{I}_D = \tau \) the Tjurina number and \(\dim \mathcal{R}_D/\mathcal{O}_D = \tau - \delta. \)

Contrary to \(\Gamma, \) \(\text{val}(\mathcal{R}_D) \) varies in the \(\mu \)-constant stratum \(S \subset \mathbb{C}^\mu \) of a semiuniversal unfolding \(F : \mathbb{C}^2 \times \mathbb{C}^\mu \to \mathbb{C}, \) \(F(x, y, s) = f(x, y) + \sum_{1 \leq k \leq \mu} t^k m_k(x, y) \)

In fact \(\tau \)-constant deformations are adapted to residue calculations as flat deformations of \(f, f_x, f_y : \)

Proposition

The partition of \(S \) by \(\text{val}(\mathcal{R}_D) \) is a partition into analytic locally closed subsets refining the \(\tau \)-constant strata.

Consider for example the irreducible branch \(x^5 - y^6. \)
Basic definitions.
Logarithmic residues and duality.
Normal crossing conditions
Residues along plane curves
The complete intersection case.

\[F(x, y, s_1, s_2, s_3) = x^5 - y^6 + s_1 x^2 y^4 + s_2 x^3 y^3 + s_3 x^3 y^4, \]

\[\mu = 20, \delta = 10, \]
Basic definitions.
Logarithmic residues and duality.
Normal crossing conditions
Residues along plane curves
The complete intersection case.

\[F(x, y, s_1, s_2, s_3) = x^5 - y^6 + s_1 x^2 y^4 + s_2 x^3 y^3 + s_3 x^3 y^4, \]

\[\mu = 20, \delta = 10, \]

\[S_1 = \{0\}, \]

\[S_2 = \{(0, 0, s_3), s_3 \neq 0\} \]

\[S'_3 = \{(s_1, s_2, s_3), s_1 \neq 0\} \]

et \[S''_3 = \{(0, s_2, s_3), s_2 \neq 0\}. \]
Basic definitions.

Logarithmic residues and duality.

Normal crossing conditions

Residues along plane curves

The complete intersection case.

\[F(x, y, s_1, s_2, s_3) = x^5 - y^6 + s_1 x^2 y^4 + s_2 x^3 y^3 + s_3 x^3 y^4, \]

\[\mu = 20, \delta = 10, \]

\[S_1 = \{0\}, \]

\[S_2 = \{(0, 0, s_3), s_3 \neq 0\} \]

\[S'_3 = \{(s_1, s_2, s_3), s_1 \neq 0\} \text{ et } S''_3 = \{(0, s_2, s_3), s_2 \neq 0\}. \]

In the second column is the value of \(\dim_{\mathcal{O}} \mathcal{R}_{D_s}/\mathcal{O}_{\tilde{D}_s} = \tau - 10 \)

<table>
<thead>
<tr>
<th>Strate</th>
<th>(\tau - \delta)</th>
<th>values < 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1)</td>
<td>10</td>
<td>(-1, -2, -3, -4, -7, -8, -9, -13, -14, -19)</td>
</tr>
<tr>
<td>(S_2)</td>
<td>9</td>
<td>(-1, -2, -3, -4, -7, -8, -9, -13, -14)</td>
</tr>
<tr>
<td>(S'_3)</td>
<td>8</td>
<td>(-1, -2, -3, -4, -7, -8, -9, -14)</td>
</tr>
<tr>
<td>(S''_3)</td>
<td>8</td>
<td>(-1, -2, -3, -4, -7, -8, -9, -13)</td>
</tr>
</tbody>
</table>
We consider the module Ω^1_C, and its set of values along a complete intersection curve.

If $\omega = \sum_k a_k dx_k \in \Omega^1_C$, and $t_i \rightarrow \varphi_i(t_i)$ parametrizes the ith branch,

$$\text{val}_i(\omega) = 1 + \text{val} \left(\frac{\varphi_i^*(\omega)}{dt_i} \right) = 1 + \text{val} \left(\sum_k (a_k \circ \varphi_i)(t_i) x'_k(t_i) \right)$$
We consider the module Ω^1_C, and its set of values along a complete intersection curve.
If $\omega = \sum_k a_k dx_k \in \Omega^1_C$, and $t_i \rightarrow \varphi_i(t_i)$ parametrizes the ith branch,

$$\text{val}_i(\omega) = 1 + \text{val} \left(\frac{\varphi_i^*(\omega)}{dt_i} \right) = 1 + \text{val} \left(\sum_k (a_k \circ \varphi_i)(t_i)x'_k(t_i) \right)$$

Proposition (G, D.Pol)

We have: $\text{val}(\mathcal{C}) = \gamma + \text{val}(\Omega^1_C) - (1, \cdots, 1)$

A direct calculation yields $\text{val}(\mathcal{C}) = \text{val}(\Omega^1_C) + \lambda$
and $\lambda = \gamma + (1, \cdots, 1)$ by R. Piene’s formula.
We consider the module Ω^1_C, and its set of values along a complete intersection curve. If $\omega = \sum_k a_k dx_k \in \Omega^1_C$, and $t_i \rightarrow \varphi_i(t_i)$ parametrizes the ith branch,

$$\text{val}_i(\omega) = 1 + \text{val} \left(\frac{\varphi_i^*(\omega)}{dt_i} \right) = 1 + \text{val} \left(\sum_k (a_k \circ \varphi_i)(t_i)x'_k(t_i) \right)$$

Proposition (G, D.Pol)

We have:

$$\text{val}(\mathcal{I}_C) = \gamma + \text{val}(\Omega^1_C) - (1, \cdots, 1)$$

A direct calculation yields

$$\text{val}(\mathcal{I}_C) = \text{val}(\Omega^1_C) + \lambda$$

and $\lambda = \gamma + (1, \cdots, 1)$ by R. Piene’s formula.
Corollary

For a plane curve $v \in \text{val}(\mathcal{R}_D) \iff \Delta(-v, \text{val}(\Omega^1_D)) = \emptyset$

In this way \mathcal{R}_D is related to the problem of moduli space for plane branches with a given semi group Γ.
Corollary

For a plane curve $v \in \text{val}(\mathcal{R}_D) \iff \Delta(-v, \text{val}(\Omega^1_D)) = \emptyset$

In this way \mathcal{R}_D is related to the problem of moduli space for plane branches with a given semi group Γ.

Theorem (Hefez, Hernandez)

The set of analytic classes \mathcal{M} *of plane branches with given topological type satisfies*

$$\mathcal{M} = \bigcup_{\Omega_D = \Omega} \mathcal{M}_\Omega.$$

Each \mathcal{M}_Ω *is separated and a quotient by a finite group of an affine open space.*
A look at complete intersection case.

Let $C \subset S = (\mathbb{C}^n, 0)$ be a complete intersection $f_1 = \cdots = f_k = 0$, D be the hypersurface $f_1 \cdots f_k = 0$, and $\widetilde{\Omega}^q_S = \sum_j \frac{1}{f_1 \cdots \hat{f}_j \cdots f_k} \Omega^q_S$.
A look at complete intersection case.

Let $C \subset S = (\mathbb{C}^n, 0)$ be a complete intersection $f_1 = \cdots = f_k = 0$, D be the hypersurface $f_1 \cdots f_k = 0$, and $\Omega_S^q = \sum_j \frac{1}{f_1 \cdots f_j \cdots f_k} \Omega_S^q$.

Definition

(Aleksandrov, Tsikh) A form $\omega \in \Omega_S^q(D) := \frac{1}{f_1 \cdots f_k} \Omega_S^q$ is logarithmic iff for all j, $df_j \wedge \omega \in \Omega_S^{q-1}$. We write $\Omega^q(\log C)$.

Proposition

(Aleksandrov, Tsikh) A form ω is logarithmic iff there are ξ holomorphic, and $\eta \in \Omega_S^{q-1}$ and $g \in \text{NZD}(\mathcal{O}_C)$ with

$$g \omega = \frac{df_1 \wedge \cdots \wedge df_k}{f_1 \cdots f_k} \wedge \xi + \eta$$

We define the residue of ω as $\text{res} \omega = \frac{\xi}{g} \big|_C \in \Omega^{q-k} \otimes Q(\mathcal{O}_C)$.
Definition (G, M. Schulze)

The complete intersection is called free iff \mathcal{J}_C (or $\mathcal{O}_C / \mathcal{J}_C$) is maximal Cohen Macaulay.
Definition (G, M. Schulze)

The complete intersection is called free iff \mathcal{I}_C (or $\mathcal{O}_C/\mathcal{I}_C$) is maximal Cohen Macaulay.

This property is equivalent to: $\text{Der}^k(-\log C) := \ker(\Theta_S^k \rightarrow \mathcal{I}_C)$ is of projective dimension $k - 1$.
Definition (G, M. Schulze)

The complete intersection is called free iff \(\mathcal{I}_C \) (or \(\mathcal{O}_C / \mathcal{I}_C \)) is maximal Cohen Macaulay.

This property is equivalent to: \(\text{Der}^k(- \log C) := \ker(\Theta^k_S \rightarrow \mathcal{I}_C) \) is of projective dimension \(k - 1 \). The following result for forms is more involved:

Theorem (Delphine Pol)

The complete intersection \(C \) is free iff \(\Omega^k(\log C) \) if of projective dimension \(k - 1 \).
Definition (G, M. Schulze)

The complete intersection is called free iff \(\mathcal{I}_C \) (or \(\mathcal{O}_C/\mathcal{I}_C \)) is maximal Cohen Macaulay.

This property is equivalent to: \(\text{Der}^k(-\log C) := \ker(\Theta_S^k \rightarrow \mathcal{I}_C) \) is of projective dimension \(k - 1 \). The following result for forms is more involved:

Theorem (Delphine Pol)

The complete intersection \(C \) is free iff \(\Omega^k(\log C) \) is of projective dimension \(k - 1 \).

We set \(\mathcal{R}_C = \text{res}(\Omega^k(\log C)) \subset Q(\mathcal{O}_C) \). Its does not depend on the choice of \(f_i \)'s. By direct calculation or because \(\mathcal{R}_C \) = the set of regular 0-forms (Aleksandrov).
We end with a few facts about R_C, noticed or proved in G, M. Schulze, or in D. Pol;

- We have $J_C^\vee = R_C \supset \mathcal{O}_{\tilde{C}}$, and for a free C also $R_C^\vee = J_C$.
We end with a few facts about R_C, noticed or proved in G, M. Schulze, or in D. Pol;

- We have $J_C^\vee = R_C \supset \mathcal{O}_C$, and for a free C also $R_C^\vee = J_C$.
- For a complete intersection curve this yields a result of symmetry, completely similar to the planar case.
We end with a few facts about \mathcal{R}_C, noticed or proved in G, M.Schulze, or in D. Pol;

- We have $\mathcal{J}_C^\vee = \mathcal{R}_C \supset \mathcal{O}_C$, and for a free C also $\mathcal{R}_C^\vee = \mathcal{J}_C$.
- For a complete intersection curve this yields a result of symmetry, completely similar to the planar case.
- We can see that $\Omega^q(\log D) \subset \Omega^q(\log C)$. In particular

$$\text{res}_C(\Omega^k(\log D)) \subset \mathcal{R}_C$$

but in general this inclusion is strict (Example of D. Pol).
Thank you for your attention