Rank one local systems

Nero Budur

KU Leuven

Differential and combinatorial aspects of singularities

Kaiserslautern, August 2015
1. Cohomology jump loci of rank one local systems
1. Cohomology jump loci of rank one local systems

$X = \text{connected topological space, finite type CW complex.}$
1. Cohomology jump loci of rank one local systems

$X = \text{connected topological space, finite type CW complex.}$

$M_B(X) = \text{Hom}(\pi_1(X), \mathbb{C}^*)$
1. Cohomology jump loci of rank one local systems

X = connected topological space, finite type CW complex.

$M_B(X) = \text{Hom}(\pi_1(X), \mathbb{C}^*) = H^1(X, \mathbb{C}^*)$
1. Cohomology jump loci of rank one local systems

$X = \text{connected topological space, finite type CW complex.}$

$M_B(X) = \text{Hom}(\pi_1(X), \mathbb{C}^*) = H^1(X, \mathbb{C}^*) = (\mathbb{C}^*)^{b_1(X)} \times \text{(f. ab. gp.)}$
1. Cohomology jump loci of rank one local systems

$X =$ connected topological space, finite type CW complex.

$M_B(X) = \text{Hom}(\pi_1(X), \mathbb{C}^*) = H^1(X, \mathbb{C}^*) = (\mathbb{C}^*)^{b_1(X)} \times (\text{f. ab. gp.})$

$= \text{the space of rank one local systems on } X.$
1. Cohomology jump loci of rank one local systems

$X = \text{connected topological space, finite type CW complex.}$

$M_B(X) = \text{Hom}(\pi_1(X), \mathbb{C}^*) = H^1(X, \mathbb{C}^*) = (\mathbb{C}^*)^{b_1(X)} \times \text{(f. ab. gp.)}$

$= \text{the space of rank one local systems on } X.$

$\Sigma^i_k(X)$
1. Cohomology jump loci of rank one local systems

X = connected topological space, finite type CW complex.

$M_B(X) = \text{Hom}(\pi_1(X), \mathbb{C}^*) = H^1(X, \mathbb{C}^*) = (\mathbb{C}^*)^{b_1(X)} \times \text{(f. ab. gp.)}$

= the space of rank one local systems on X.

$\Sigma^i_k(X) = \{ \rho \in M_B(X) \mid \text{dim } H^i(X, L_{\rho}) \geq k \}$
1. Cohomology jump loci of rank one local systems

X = connected topological space, finite type CW complex.

$M_B(X) = \text{Hom}(\pi_1(X), \mathbb{C}^*) = H^1(X, \mathbb{C}^*) = (\mathbb{C}^*)^{b_1(X)} \times \text{ (f. ab. gp.)}$

= the space of rank one local systems on X.

$\Sigma^i_k(X) = \{ \rho \in M_B(X) \mid \dim H^i(X, L_\rho) \geq k \}$

= closed subvariety in $M_B(X)$
1. Cohomology jump loci of rank one local systems

$X = \text{connected topological space, finite type CW complex.}$

$M_B(X) = \text{Hom}(\pi_1(X), \mathbb{C}^*) = H^1(X, \mathbb{C}^*) = (\mathbb{C}^*)^{b_1(X)} \times (\text{f. ab. gp.})$

$= \text{the space of rank one local systems on } X.$

$\Sigma^i_k(X) = \{ \rho \in M_B(X) \mid \dim H^i(X, L_\rho) \geq k \}$

$= \text{closed subvariety in } M_B(X) \text{ defined over } \mathbb{Q}.$
1. Cohomology jump loci of rank one local systems

X = connected topological space, finite type CW complex.

$M_B(X) = Hom(\pi_1(X), \mathbb{C}^*) = H^1(X, \mathbb{C}^*) = (\mathbb{C}^*)^{b_1(X)} \times (\text{f. ab. gp.})$

= the space of rank one local systems on X.

$\Sigma^i_k(X) = \{ \rho \in M_B(X) \mid \dim H^i(X, L_\rho) \geq k \}$

= closed subvariety in $M_B(X)$ defined over \mathbb{Q}.

$\Sigma(X) = \bigcup_i \Sigma^i_1(X)$
1. Cohomology jump loci of rank one local systems

$X =$ connected topological space, finite type CW complex.

$M_B(X) = \text{Hom}(\pi_1(X), \mathbb{C}^*) = H^1(X, \mathbb{C}^*) = (\mathbb{C}^*)^{b_1(X)} \times \text{ (f. ab. gp.)}$

$= \text{ the space of rank one local systems on } X.$

$\Sigma^i_k(X) = \{ \rho \in M_B(X) \mid \dim H^i(X, L_\rho) \geq k \}$

$= \text{ closed subvariety in } M_B(X) \text{ defined over } \mathbb{Q}.$

$\Sigma(X) = \bigcup_i \Sigma^i_1(X) = \{ \rho \in M_B(X) \mid H^\bullet(X, L_\rho) \neq 0 \}$
1. Cohomology jump loci of rank one local systems

$X = \text{connected topological space, finite type CW complex.}$

$M_B(X) = \text{Hom}(\pi_1(X), \mathbb{C}^*) = H^1(X, \mathbb{C}^*) = (\mathbb{C}^*)^{b_1(X)} \times \text{(f. ab. gp.)} = \text{the space of rank one local systems on } X.$

$\Sigma^i_k(X) = \{ \rho \in M_B(X) \mid \dim H^i(X, L_\rho) \geq k \}$

$= \text{closed subvariety in } M_B(X) \text{ defined over } \mathbb{Q}.$

$\Sigma(X) = \bigcup_i \Sigma^i_1(X) = \{ \rho \in M_B(X) \mid H^\ast(X, L_\rho) \neq 0 \}$

$= \text{the cohomology support locus.}$
Conjecture:

Let X be either one of the following:

(A) compact Kähler manifold

(B) small ball $f^{-1}(0)$, where f is germ of holomorphic function on \mathbb{C}^n.

Then $\Sigma_i k(X) = \text{finite union of torsion translated subtori of } M_B(X)$.

Long list of partial cases: Beauville, Green-Lazarsfeld, Arapura, Simpson, Campana, Pink-Roessler, Dimca-Papadima-Suciu, Dimca-Papadima, etc.

Case (B) was wrongly claimed by Libgober.

Nero Budur (KU Leuven) Rank one local systems
Conjecture: Let X be either one of the following:

(A) compact Kähler manifold
(B) small ball $f^{-1}(0)$, where f is the germ of holom. function on \mathbb{C}^n.

Then $\Sigma_i k(X) = \text{finite union of torsion translated subtori of } M_B(X)$. Long list of partial cases: Beauville, Green-Lazarsfeld, Arapura, Simpson, Campana, Pink-Roessler, Dimca-Papadima-Suciu, Dimca-Papadima, etc. on which the most general results are built.

Case (B) was wrongly claimed by Libgober.
Conjecture: Let X be either one of the following:

(A) (compact Kähler manifold) \ (simple normal crossing divisor),
Conjecture: Let X be either one of the following:

(A) (compact Kähler manifold) \ (simple normal crossing divisor),

(B) (small ball) \ $f^{-1}(0)$, where f = germ of holom. fc. on \mathbb{C}^n.

Long list of partial cases: Beauville, Green-Lazarsfeld, Arapura, Simpson, Campana, Pink-Roessler, Dimca-Papadima-Suciu, Dimca-Papadima, etc. on which the most general results are built.

Case (B) was wrongly claimed by Libgober.
Conjecture: Let X be either one of the following:

(A) (compact Kähler manifold) \ (simple normal crossing divisor),

(B) (small ball) \ $f^{-1}(0)$, where $f =$ germ of holom. fc. on \mathbb{C}^n.

Then $\Sigma^i_k(X) =$ finite union of torsion translated subtori of $M_B(X)$.
Conjecture: Let X be either one of the following:

(A) (compact Kähler manifold) \ (simple normal crossing divisor),

(B) (small ball) \ $f^{-1}(0)$, where f = germ of holom. fc. on \mathbb{C}^n.

Then $\Sigma^i_k(X) =$ finite union of torsion translated subtori of $M_B(X)$.

Long list of partial cases: Beauville, Green-Lazarsfeld, Arapura, Simpson, Campana, Pink-Roessler, Dimca-Papadima-Suciu, Dimca-Papadima, etc.
Conjecture: Let X be either one of the following:

(A) (compact Kähler manifold) \ (simple normal crossing divisor),

(B) (small ball) \ $f^{-1}(0)$, where $f = \text{germ of holom. fc. on } \mathbb{C}^n$.

Then $\Sigma_k^i(X) = \text{finite union of torsion translated subtori of } M_B(X)$.

Long list of partial cases: Beauville, Green-Lazarsfeld, Arapura, Simpson, Campana, Pink-Roessler, Dimca-Papadima- Suciu, Dimca-Papadima, etc. on which the most general results are built.
Conjecture: Let X be either one of the following:

(A) (compact Kähler manifold) \ (simple normal crossing divisor),

(B) (small ball) \ $f^{-1}(0)$, where $f =$ germ of holom. fc. on \mathbb{C}^n.

Then $\Sigma^i_k(X) =$ finite union of torsion translated subtori of $M_B(X)$.

Long list of partial cases: Beauville, Green-Lazarsfeld, Arapura, Simpson, Campana, Pink-Roessler, Dimca-Papadima- Suciu, Dimca-Papadima, etc. on which the most general results are built.

Case (B) was wrongly claimed by Libgober.
2. Results

\[(1) \quad \bar{X} = \bar{X} \text{ (sncd)}, \quad \bar{X} = \text{compact Kähler mfd}, \]

\[H^1(\bar{X}, \mathbb{C}) = 0 \implies \Sigma_i k(X) = \text{finite union of unitary translated subtori}. \]

\[(2) \quad \text{Case (A) for positive dimensional components of } \Sigma_1(X). \]

\[\text{[Budur - Wang 2013]}: \quad X = \text{smooth quasi-projective complex variety}. \]

\[\text{[Wang 2013]}: \quad X = \text{compact Kähler manifold}. \]
2. Results

[Arapura 1997]: (1) $X = \bar{X} \setminus \text{(sncd)}$, $\bar{X} = \text{compact Kähler mfd}$,

$$H^1(\bar{X}, \mathbb{C}) = 0$$
2. Results

[Arapura 1997]: (1) $X = \bar{X} \setminus \text{(sned)}$, $\bar{X} =$ compact Kähler mfd,

$H^1(\bar{X}, \mathbb{C}) = 0 \Rightarrow \Sigma_k^i(X) =$ finite union of unitary translated subtori.

[Budur - Wang 2013]: $X =$ smooth quasi-projective complex variety.

[Wang 2013]: $X =$ compact Kähler manifold.

Rank one local systems
2. Results

[Arapura 1997]: (1) $X = \bar{X} \setminus \text{(sncd)}$, $\bar{X} = \text{compact Kähler mfd}$,

$H^1(\bar{X}, \mathbb{C}) = 0 \Rightarrow \Sigma^i_k(X) = \text{finite union of unitary translated subtori}$.

(2) Case (A) for positive dimensional components of $\Sigma^1_1(X)$.
2. Results

[Arapura 1997]: (1) $X = \tilde{X} \setminus \text{(sned)}, \tilde{X} = \text{compact Kähler mfd},$

$H^1(\tilde{X}, \mathbb{C}) = 0 \Rightarrow \Sigma_k^i(X) = \text{finite union of unitary translated subtori}.$

(2) Case (A) for positive dimensional components of $\Sigma_1^1(X)$.

[Budur - Wang 2013]: $X = \text{smooth quasi-projective complex variety}.$
2. Results

[Arapura 1997]: (1) \(X = \bar{X} \setminus \text{snod} \), \(\bar{X} = \) compact Kähler mfd,

\[
H^1(\bar{X}, \mathbb{C}) = 0 \Rightarrow \Sigma_k^i(X) = \text{finite union of unitary translated subtori}.
\]

(2) Case (A) for positive dimensional components of \(\Sigma_1^1(X) \).

[Budur - Wang 2013]: \(X = \) smooth quasi-projective complex variety.

[Wang 2013]: \(X = \) compact Kähler manifold.
[Dimca-Papadima-Suciu 2009]:

\[X = \text{formal space} \Rightarrow TC_1(\Sigma_1^k(X)) = \{w \in H_1(X, \mathbb{C}) | \dim H_q(X, \mathbb{C}) \cup w \geq k \}\]

and the components of \(\Sigma_1^k(X)\) through 1 are subtori.

[Durfee-Hain 1988]: \(X = (\text{small ball}) \setminus f^{-1}(0)\), where \(f\) is germ of holomorphic function on \(\mathbb{C}^n \Rightarrow X = \text{formal}\).

Corollary: Case (B) for components of \(\Sigma_1^k(X)\) passing through 1.

Small ball complements (case (B)) are related to classical singularity theory.
[Dimca-Papadima-Suciu 2009]: $X = 1$-formal space \Rightarrow
[Dimca-Papadima-Suciu 2009]: $X = 1$-formal space \Rightarrow

$$TC_1(\Sigma^1_k(X)) = \{ w \in H^1(X, \mathbb{C}) \mid \dim H^1(H^*(X, \mathbb{C}), w \cup \cdot) \geq k \}$$
[Dimca-Papadima-Suciu 2009]: $X = 1$-formal space \Rightarrow

$TC_1(\Sigma^1_k(X)) = \{w \in H^1(X, \mathbb{C}) \mid \dim H^1(H^*(X, \mathbb{C}), w \cup .) \geq k\}$

and the components of $\Sigma^1_k(X)$ through 1 are subtori.
[Dimca-Papadima-Suciu 2009]: $X = 1$-formal space \Rightarrow

$$TC_1(\Sigma^1_k(X)) = \{ w \in H^1(X, \mathbb{C}) \mid \dim H^1(H^*(X, \mathbb{C}), w \cup .) \geq k \}$$

and the components of $\Sigma^1_k(X)$ through 1 are subtori.

[Durfee-Hain 1988]: $X = (\text{small ball}) \setminus f^{-1}(0)$, where f is germ of holomorphic function on \mathbb{C}^n
[Dimca-Papadima-Suciu 2009]: $X = 1$-formal space \Rightarrow

$$TC_1(\Sigma^1_k(X)) = \{w \in H^1(X, \mathbb{C}) \mid \dim H^1(H^\ast(X, \mathbb{C}), w \cup .) \geq k\}$$

and the components of $\Sigma^1_k(X)$ through 1 are subtori.

[Durfee-Hain 1988]: $X = (\text{small ball}) \setminus f^{-1}(0)$, where f is germ of holomorphic function on $\mathbb{C}^n \Rightarrow X = 1$-formal.
[Dimca-Papadima-Suciu 2009]: $X = 1$-formal space \Rightarrow

\[TC_1(\Sigma^1_k(X)) = \{ w \in H^1(X, \mathbb{C}) \mid \dim H^1(H^\bullet(X, \mathbb{C}), w \cup \cdot) \geq k \} \]

and the components of $\Sigma^1_k(X)$ through 1 are subtori.

[Durfee-Hain 1988]: $X = (\text{small ball}) \setminus f^{-1}(0)$, where f is germ of holomorphic function on $\mathbb{C}^n \Rightarrow X = 1$-formal.

Corollary: Case (B) for components of $\Sigma^1_k(X)$ passing through 1.
[Dimca-Papadima-Suciu 2009]: $X = 1$-formal space \Rightarrow

$$TC_1(\Sigma^1_k(X)) = \{w \in H^1(X, \mathbb{C}) \mid \dim H^1(H^\bullet(X, \mathbb{C}), w \cup .) \geq k\}$$

and the components of $\Sigma^1_k(X)$ through 1 are subtori.

[Durfee-Hain 1988]: $X = (\text{small ball}) \setminus f^{-1}(0)$, where f is germ of holomorphic function on $\mathbb{C}^n \Rightarrow X = 1$-formal.

Corollary: Case (B) for components of $\Sigma^1_k(X)$ passing through 1.

Small ball complements (case (B)) are related to classical singularity theory:
3. Relation with Milnor fibers

Let \(f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0) \) be germ of holomorphic function, \(F_f = \) Milnor fiber = (small ball) \(\setminus f^{-1}(t) \) for \(0 < |t| \ll 1 \).

Monodromy Theorem: The set \(E(f) \) of eigenvalues of monodromy on \(H^q(F_f, \mathbb{C}) \) consists of roots of unity.

Proposition: \(X = (\text{small ball}) \setminus f^{-1}(0) \Rightarrow E(f) = (\text{diagonal}) \cap \Sigma(X) \).

Here the 1-diml diagonal is in \(MB(X) = (\mathbb{C}^*)^r \), \(r = \) number of branches of \(f \).

So case (B) is ok for slices of \(\Sigma \) by 1-dim algebraic subgroups.
3. Relation with Milnor fibers

Let $f : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}, 0)$ be germ of holomorphic function,
3. Relation with Milnor fibers

Let $f : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}, 0)$ be germ of holomorphic function,

$$F_f = \text{Milnor fiber}$$
3. Relation with Milnor fibers

Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be germ of holomorphic function,

$$F_f = \text{Milnor fiber} = \text{(small ball)} \setminus f^{-1}(t) \text{ for } 0 < |t| \ll 1.$$
3. Relation with Milnor fibers

Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be germ of holomorphic function,

$$F_f = \text{Milnor fiber} = (\text{small ball}) \setminus f^{-1}(t) \text{ for } 0 < |t| \ll 1.$$

Monodromy Theorem:
3. Relation with Milnor fibers

Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be germ of holomorphic function,

$$F_f = \text{Milnor fiber} = (\text{small ball}) \setminus f^{-1}(t) \text{ for } 0 < |t| \ll 1.$$

Monodromy Theorem: The set $E(f)$ of eigenvalues of monodromy on $H^*(F_f, \mathbb{C})$ consists of roots of unity.
3. Relation with Milnor fibers

Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be germ of holomorphic function,

$$F_f = \text{Milnor fiber} = (\text{small ball}) \setminus f^{-1}(t) \text{ for } 0 < |t| \ll 1.$$

Monodromy Theorem: The set $E(f)$ of eigenvalues of monodromy on $H^\bullet(F_f, \mathbb{C})$ consists of roots of unity.

Proposition:
3. Relation with Milnor fibers

Let \(f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0) \) be germ of holomorphic function,

\[
F_f = \text{Milnor fiber} = (\text{small ball}) \setminus f^{-1}(t) \text{ for } 0 < |t| \ll 1.
\]

Monodromy Theorem: The set \(E(f) \) of eigenvalues of monodromy on \(H^\bullet(F_f, \mathbb{C}) \) consists of roots of unity.

Proposition: \(X = (\text{small ball}) \setminus f^{-1}(0) \)
3. Relation with Milnor fibers

Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be germ of holomorphic function,

$$F_f = \text{Milnor fiber} = (\text{small ball}) \setminus f^{-1}(t) \text{ for } 0 < |t| \ll 1.$$

Monodromy Theorem: The set $E(f)$ of eigenvalues of monodromy on $H^\cdot(F_f, \mathbb{C})$ consists of roots of unity.

Proposition: $X = (\text{small ball}) \setminus f^{-1}(0) \Rightarrow E(f) = (\text{diagonal}) \cap \Sigma(X)$.
3. Relation with Milnor fibers

Let \(f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0) \) be germ of holomorphic function,

\[
F_f = \text{Milnor fiber} = (\text{small ball}) \setminus f^{-1}(t) \text{ for } 0 < |t| \ll 1.
\]

Monodromy Theorem: The set \(E(f) \) of eigenvalues of monodromy on \(H^\bullet(F_f, \mathbb{C}) \) consists of roots of unity.

Proposition: \(X = (\text{small ball}) \setminus f^{-1}(0) \Rightarrow E(f) = (\text{diagonal}) \cap \Sigma(X). \)

Here the 1-diml diagonal is in \(M_B(X) = (\mathbb{C}^*)^r \).
3. Relation with Milnor fibers

Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be germ of holomorphic function,

$$F_f = \text{Milnor fiber} = (\text{small ball}) \setminus f^{-1}(t) \text{ for } 0 < |t| \ll 1.$$

Monodromy Theorem: The set $E(f)$ of eigenvalues of monodromy on $H^\bullet(F_f, \mathbb{C})$ consists of roots of unity.

Proposition: $X = (\text{small ball}) \setminus f^{-1}(0) \Rightarrow E(f) = (\text{diagonal}) \cap \Sigma(X)$.

Here the 1-diml diagonal is in $M_B(X) = (\mathbb{C}^*)^r$, $r =$ number of branches of f.
3. Relation with Milnor fibers

Let $f : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}, 0)$ be germ of holomorphic function,

$$F_f = \text{Milnor fiber} = (\text{small ball}) \setminus f^{-1}(t) \text{ for } 0 < |t| \ll 1.$$

Monodromy Theorem: The set $E(f)$ of eigenvalues of monodromy on $H^\bullet(F_f, \mathbb{C})$ consists of roots of unity.

Proposition: $X = (\text{small ball}) \setminus f^{-1}(0) \Rightarrow E(f) = (\text{diagonal}) \cap \Sigma(X)$.

Here the 1-diml diagonal is in $M_B(X) = (\mathbb{C}^*)^r$, $r =$ number of branches of f. So case (B) is ok for slices of $\Sigma^i_k(X)$ by 1-dim algebraic subgroups.
4. Fastest way to compute $\Sigma(X)$?
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r)$,
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r)$, $f_j \in \mathbb{C}[x_1, \ldots, x_n]$, \[\text{\[Lichtin, Sabbah 1987\]}: B_F \neq 0.\]
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r)$, $f_j \in \mathbb{C}[x_1, \ldots, x_n]$, $f = \prod_{j=1}^{r} f_j$, ...
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r), f_j \in \mathbb{C}[x_1, \ldots, x_n], f = \prod_{j=1}^r f_j, \ x \in f^{-1}(0),$
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r), f_j \in \mathbb{C}[x_1, \ldots, x_n], f = \prod_{j=1}^{r} f_j, \ x \in f^{-1}(0),

U_{F,x} = \text{(small ball at } x \text{)} \setminus f^{-1}(0).$
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r)$, $f_j \in \mathbb{C}[x_1, \ldots, x_n]$, $f = \prod_{j=1}^{r} f_j$, $x \in f^{-1}(0)$,

$U_{F,x} = \text{(small ball at } x\text{)} \setminus f^{-1}(0)$. Then $\Sigma(U_{F,x})$
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r)$, $f_j \in \mathbb{C}[x_1, \ldots, x_n]$, $f = \prod_{j=1}^{r} f_j$, $x \in f^{-1}(0)$,

$U_{F,x} = \text{(small ball at } x) \setminus f^{-1}(0)$. Then $\Sigma(U_{F,x})^{\text{unif}}$
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r)$, $f_j \in \mathbb{C}[x_1, \ldots, x_n]$, $f = \prod_{j=1}^r f_j$, $x \in f^{-1}(0)$, $U_{F,x} = (\text{small ball at } x) \setminus f^{-1}(0)$. Then $\Sigma(U_{F,x})^{unif} \subset (\mathbb{C}^*)^r$ for all x.
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r)$, $f_j \in \mathbb{C}[x_1, \ldots, x_n]$, $f = \prod_{j=1}^{r} f_j$, $x \in f^{-1}(0)$,

$U_{F,x} = (\text{small ball at } x) \setminus f^{-1}(0)$. Then $\Sigma(U_{F,x})^{\text{unif}} \subset (\mathbb{C}^*)^r$ for all x.

$\Sigma(F) := \bigcup_{x \in f^{-1}(0)} \Sigma(U_{F,x})^{\text{unif}}$
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r)$, $f_j \in \mathbb{C}[x_1, \ldots, x_n]$, $f = \prod_{j=1}^{r} f_j$, $x \in f^{-1}(0)$,

$U_{F,x} = \text{(small ball at } x) \setminus f^{-1}(0)$. Then $\Sigma(U_{F,x})^{\text{unif}} \subset (\mathbb{C}^*)^r$ for all x.

$$\Sigma(F) := \bigcup_{x \in f^{-1}(0)} \Sigma(U_{F,x})^{\text{unif}}$$
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r)$, $f_j \in \mathbb{C}[x_1, \ldots, x_n]$, $f = \prod_{j=1}^r f_j$, $x \in f^{-1}(0)$, $U_{F,x} = \text{(small ball at } x) \setminus f^{-1}(0)$. Then $\Sigma(U_{F,x})^{\text{unif}} \subset (\mathbb{C}^*)^r$ for all x.

$$\Sigma(F) := \bigcup_{x \in f^{-1}(0)} \Sigma(U_{F,x})^{\text{unif}} \subset (\mathbb{C}^*)^r$$
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r)$, $f_j \in \mathbb{C}[x_1, \ldots, x_n]$, $f = \prod_{j=1}^{r} f_j$, $x \in f^{-1}(0)$,

$U_{F,x} =$ (small ball at x) \(\setminus f^{-1}(0) \). Then $\Sigma(U_{F,x})^{unif} \subset (\mathbb{C}^*)^r$ for all x.

$$\Sigma(F) := \bigcup_{x \in f^{-1}(0)} \Sigma(U_{F,x})^{unif} \subset (\mathbb{C}^*)^r$$

= uniform cohomology support locus
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r)$, $f_j \in \mathbb{C}[x_1, \ldots, x_n]$, $f = \prod_{j=1}^r f_j$, $x \in f^{-1}(0)$, $U_{F,x} = (\text{small ball at } x) \setminus f^{-1}(0)$. Then $\Sigma(U_{F,x})^{\text{unif}} \subset (\mathbb{C}^*)^r$ for all x.

$$\Sigma(F) := \bigcup_{x \in f^{-1}(0)} \Sigma(U_{F,x})^{\text{unif}} \subset (\mathbb{C}^*)^r$$

$=$ uniform cohomology support locus

$B_F :=$
4. Fastest way to compute \(\Sigma(X) \)?

Let \(F = (f_1, \ldots, f_r) \), \(f_j \in \mathbb{C}[x_1, \ldots, x_n] \), \(f = \prod_{j=1}^r f_j \), \(x \in f^{-1}(0) \),

\[U_{F,x} = (\text{small ball at } x) \setminus f^{-1}(0). \]

Then \(\Sigma(U_{F,x})^{\text{unif}} \subset (\mathbb{C}^*)^r \) for all \(x \).

\[
\Sigma(F) := \bigcup_{x \in f^{-1}(0)} \Sigma(U_{F,x})^{\text{unif}} \subset (\mathbb{C}^*)^r
\]

= uniform cohomology support locus

\(B_F := \) the (Bernstein-Sato) ideal
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r), f_j \in \mathbb{C}[x_1, \ldots, x_n], f = \prod_{j=1}^{r} f_j, x \in f^{-1}(0), \quad U_{F,x} = \text{(small ball at } x) \setminus f^{-1}(0).$ Then $\Sigma(U_{F,x})^{unif} \subset (\mathbb{C}^*)^r$ for all $x.$

$$\Sigma(F) := \bigcup_{x \in f^{-1}(0)} \Sigma(U_{F,x})^{unif} \subset (\mathbb{C}^*)^r$$

= uniform cohomology support locus

$B_F := \text{the (Bernstein-Sato) ideal in } \mathbb{C}[s_1, \ldots, s_r]$
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r), f_j \in \mathbb{C}[x_1, \ldots, x_n], f = \prod_{j=1}^{r} f_j, x \in f^{-1}(0),$

$U_{F,x} = (\text{small ball at } x) \setminus f^{-1}(0).$ Then $\Sigma(U_{F,x})^{\text{unif}} \subset (\mathbb{C}^*)^r$ for all $x.$

$$\Sigma(F) := \bigcup_{x \in f^{-1}(0)} \Sigma(U_{F,x})^{\text{unif}} \subset (\mathbb{C}^*)^r$$

= uniform cohomology support locus

$B_F :=$ the (Bernstein-Sato) ideal in $\mathbb{C}[s_1, \ldots, s_r]$ generated by b with
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r)$, $f_j \in \mathbb{C}[x_1, \ldots, x_n]$, $f = \prod_{j=1}^r f_j$, $x \in f^{-1}(0)$,

$U_{F,x} =$ (small ball at x) \(\setminus \) $f^{-1}(0)$. Then $\Sigma(U_{F,x})^{\text{unif}} \subset (\mathbb{C}^*)^r$ for all x.

$$\Sigma(F) := \bigcup_{x \in f^{-1}(0)} \Sigma(U_{F,x})^{\text{unif}} \subset (\mathbb{C}^*)^r$$

= uniform cohomology support locus

$B_F :=$ the (Bernstein-Sato) ideal in $\mathbb{C}[s_1, \ldots, s_r]$ generated by b with

$$b(s_1, \ldots, s_r)f_1^{s_1} \ldots f_r^{s_r} = Pf_1^{s_1+1} \ldots f_r^{s_r+1}$$
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r)$, $f_j \in \mathbb{C}[x_1, \ldots, x_n]$, $f = \prod_{j=1}^{r} f_j$, $x \in f^{-1}(0)$,

$U_{F,x} = \text{(small ball at } x) \setminus f^{-1}(0)$. Then $\Sigma(U_{F,x})^{unif} \subset (\mathbb{C}^*)^r$ for all x.

$$\Sigma(F) := \bigcup_{x \in f^{-1}(0)} \Sigma(U_{F,x})^{unif} \subset (\mathbb{C}^*)^r$$

= uniform cohomology support locus

$B_F :=$ the (Bernstein-Sato) ideal in $\mathbb{C}[s_1, \ldots, s_r]$ generated by b with

$$b(s_1, \ldots, s_r)f_1^{s_1} \ldots f_r^{s_r} = Pf_1^{s_1+1} \ldots f_r^{s_r+1}$$

for some $P \in \mathbb{C}[x, \partial/\partial x, s]$.
4. Fastest way to compute $\Sigma(X)$?

Let $F = (f_1, \ldots, f_r)$, $f_j \in \mathbb{C}[x_1, \ldots, x_n]$, $f = \prod_{j=1}^{r} f_j$, $x \in f^{-1}(0)$.

$U_{F,x} = (\text{small ball at } x) \setminus f^{-1}(0)$. Then $\Sigma(U_{F,x})^{unif} \subset (\mathbb{C}^*)^r$ for all x.

$$\Sigma(F) := \bigcup_{x \in f^{-1}(0)} \Sigma(U_{F,x})^{unif} \subset (\mathbb{C}^*)^r$$

$= \text{ uniform cohomology support locus}$

$B_F := \text{ the (Bernstein-Sato) ideal in } \mathbb{C}[s_1, \ldots, s_r] \text{ generated by } b$ with

$$b(s_1, \ldots, s_r)f_1^{s_1} \cdots f_r^{s_r} = Pf_1^{s_1+1} \cdots f_r^{s_r+1}$$

for some $P \in \mathbb{C}[x, \partial/\partial x, s]$.

[lichtin, sabbah 1987]: $B_F \neq 0$.
Conjecture [B. 2013]:

\[\text{Exp}(\text{Zero}(\mathcal{B} \mathcal{F})) = \sum(\mathcal{F}) \].

Theorem [B. 2013]:

\[\text{Exp}(\text{Zero}(\mathcal{B} \mathcal{F})) \supset \sum(\mathcal{F}). \]

Sanity check:

\[\sum(\mathcal{F}) = \text{combinatorial if } f_i \text{ are hyperplanes.} \]

Easy.

Eg: \[\mathcal{F} = (x, y, x + y, z, x + y + z) \]. That is, cone over these lines:

Nero Budur (KU Leuven)
Rank one local systems
Conjecture [B. 2013]: $\operatorname{Exp}(\text{Zero}(B_F)) = \Sigma(F)$.
Conjecture [B. 2013]: $\text{Exp}(\text{Zero}(B_F)) = \Sigma(F)$.

Theorem [B. 2013]: $\text{Exp}(\text{Zero}(B_F)) \supset \Sigma(F)$.
Conjecture [B. 2013]: $\text{Exp}(\text{Zero}(B_F)) = \Sigma(F)$.

Theorem [B. 2013]: $\text{Exp}(\text{Zero}(B_F)) \supset \Sigma(F)$.

Sanity check:
Conjecture [B. 2013]: $\text{Exp}(\text{Zero}(B_F)) = \Sigma(F)$.

Theorem [B. 2013]: $\text{Exp}(\text{Zero}(B_F)) \supset \Sigma(F)$.

Sanity check: $\Sigma(F) =$ combinatorial if f_i are hyperplanes.
Conjecture [B. 2013]: $\text{Exp}(\text{Zero}(B_F)) = \Sigma(F)$.

Theorem [B. 2013]: $\text{Exp}(\text{Zero}(B_F)) \supset \Sigma(F)$.

Sanity check: $\Sigma(F) =$ combinatorial if f_i are hyperplanes. Easy.

Eg: $F = (x, y, x + y, z, x + y + z)$. That is, cone over these lines:
Conjecture [B. 2013]: $\text{Exp}(\text{Zero}(B_F)) = \Sigma(F)$.

Theorem [B. 2013]: $\text{Exp}(\text{Zero}(B_F)) \supset \Sigma(F)$.

Sanity check: $\Sigma(F) = \text{combinatorial if } f_i \text{ are hyperplanes. Easy.}$

Eg: $F = (x, y, x + y, z, x + y + z)$. That is, cone over these lines:
Conjecture [B. 2013]: \(\text{Exp}(\text{Zero}(B_F)) = \Sigma(F) \).

Theorem [B. 2013]: \(\text{Exp}(\text{Zero}(B_F)) \supset \Sigma(F) \).

Sanity check: \(\Sigma(F) \) = combinatorial if \(f_i \) are hyperplanes. Easy.

Eg: \(F = (x, y, x + y, z, x + y + z) \). That is, cone over these lines:
Then $\Sigma(F)$ in $(C^\infty)^5$ is given by
\[
(t_1 t_2 t_3 - 1)(t_3 t_4 t_5 - 1)(t_1 t_2 t_3 t_4 t_5 - 1) \prod_{5 \leq j \leq 1} (t_j - 1) = 0.
\]

Computations with RISA/ASIR and DMOD in SINGULAR coupled with new techniques give B_F, confirming the conjecture.

The conjecture relating B_F with rank one local systems is our attempt to uncover the deeper reasons beyond the classical result: [Malgrange 1982, Kashiwara 1983]: Case $r = 1$ of conjecture is true.
Then $\Sigma(F)$ in $(\mathbb{C}^*)^5$ is given by

$$\prod_{5}^{j=1} (t_j - 1) = 0.$$
Then $\Sigma(F)$ in $(\mathbb{C}^*)^5$ is given by

$$(t_1t_2t_3 - 1)(t_3t_4t_5 - 1)(t_1t_2t_3t_4t_5 - 1) \prod_{j=1}^{5} (t_j - 1) = 0.$$
Then $\Sigma(F)$ in $(\mathbb{C}^*)^5$ is given by

$$(t_1t_2t_3 - 1)(t_3t_4t_5 - 1)(t_1t_2t_3t_4t_5 - 1) \prod_{j=1}^5 (t_j - 1) = 0.$$

Computations with RISA/ASIR and DMOD.LIB in SINGULAR coupled with new techniques give B_F, confirming the conjecture.
Then $\Sigma(F)$ in $(\mathbb{C}^*)^5$ is given by

$$(t_1t_2t_3 - 1)(t_3t_4t_5 - 1)(t_1t_2t_3t_4t_5 - 1) \prod_{j=1}^{5}(t_j - 1) = 0.$$

Computations with RISA/ASIR and dmod.lib in SINGULAR coupled with new techniques give B_F, confirming the conjecture.

The conjecture relating B_F with rank one local systems is our attempt to uncover the deeper reasons beyond the classical result:
Then $\Sigma(F)$ in $(\mathbb{C}^*)^5$ is given by

$$(t_1t_2t_3 - 1)(t_3t_4t_5 - 1)(t_1t_2t_3t_4t_5 - 1) \prod_{j=1}^{5}(t_j - 1) = 0.$$

Computations with RISA/ASIR and dMOD.lib in SINGULAR coupled with new techniques give B_F, confirming the conjecture.

The conjecture relating B_F with rank one local systems is our attempt to uncover the deeper reasons beyond the classical result:

[Malgrange 1982, Kashiwara 1983]: Case $r = 1$ of conjecture is true.
5. Proofs of structure theorems for cohomology jump loci
5. Proofs of structure theorems for cohomology jump loci

(i) Show components of $\Sigma^i_k(X)$ through 1 are subtori.
5. Proofs of structure theorems for cohomology jump loci

(i) Show components of $\Sigma^i_k(X)$ through 1 are subtori. Infinitesimal deformations with cohomology constraints of 1
5. Proofs of structure theorems for cohomology jump loci

(i) Show components of $\Sigma^i_k(X)$ through 1 are subtori. Infinitesimal deformations with cohomology constraints of 1 are governed by the CDGA $A^\bullet_{DR}(X, \mathbb{C})$.
5. Proofs of structure theorems for cohomology jump loci

(i) Show components of $\Sigma^i_k(X)$ through 1 are subtori. Infinitesimal deformations with cohomology constraints of 1 are governed by the CDGA $A_{DR}^\bullet(X, \mathbb{C})$. Too big.
5. Proofs of structure theorems for cohomology jump loci

(i) Show components of $\Sigma^i_k(X)$ through 1 are subtori. Infinitesimal deformations with cohomology constraints of 1 are governed by the CDGA $A_{DR}^\bullet(X, \mathbb{C})$. Too big. Find smaller model with weights:
5. Proofs of structure theorems for cohomology jump loci

(i) Show components of $\Sigma^i_k(X)$ through 1 are subtori. Infinitesimal deformations with cohomology constraints of 1 are governed by the CDGA $A_{DR}^*(X, \mathbb{C})$. Too big. Find smaller model with weights:

[Dimca-Papadima 2012]:

Nero Budur (KU Leuven) | Rank one local systems
5. Proofs of structure theorems for cohomology jump loci

(i) Show components of $\Sigma^i_k(X)$ through 1 are subtori. Infinitesimal deformations with cohomology constraints of 1 are governed by the CDGA $A^\bullet_{DR}(X, \mathbb{C})$. Too big. Find smaller model with weights:

[Dimca-Papadima 2012]: If $X =$ smooth quasi-projective, use Morgan’s Gysin’s model to achieve (i):
5. Proofs of structure theorems for cohomology jump loci

(i) Show components of $\Sigma^i_k(X)$ through 1 are subtori. Infinitesimal deformations with cohomology constraints of 1 are governed by the CDGA $A^\bullet_{DR}(X, \mathbb{C})$. Too big. Find smaller model with weights:

[Dimca-Papadima 2012]: If $X = $ smooth quasi-projective, use Morgan’s Gysin’s model to achieve (i):

$$A^\bullet_{DR}(X, \mathbb{C})$$
5. Proofs of structure theorems for cohomology jump loci

(i) Show components of $\Sigma_k^i(X)$ through 1 are subtori. Infinitesimal deformations with cohomology constraints of 1 are governed by the CDGA $A^\bullet_{DR}(X, \mathbb{C})$. Too big. Find smaller model with weights:

[Dimca-Papadima 2012]: If $X = \text{smooth quasi-projective}$, use Morgan’s Gysin’s model to achieve (i):

$$A^\bullet_{DR}(X, \mathbb{C}) \sim_{\text{Morgan}}$$
5. Proofs of structure theorems for cohomology jump loci

(i) Show components of $\Sigma^i_k(X)$ through 1 are subtori. Infinitesimal deformations with cohomology constraints of 1 are governed by the CDGA $A^\bullet_{DR}(X, \mathbb{C})$. Too big. Find smaller model with weights:

[Dimca-Papadima 2012]: If $X = \text{smooth quasi-projective}$, use Morgan’s Gysin’s model to achieve (i):

$$A^\bullet_{DR}(X, \mathbb{C}) \xrightarrow{\text{Morgan}} \left(Gys^\bullet(X) = \bigoplus_{|I|=\bullet-i} H^i(D_I, \mathbb{C}), d^\bullet \right).$$
Show that any irreducible component of $\Sigma_{i} k(X)$ contains a torsion point.

Using finite cyclic covers, the proof is then reduced to (i).

Theorem (B - W):
If $S \subset C^n$, $T \subset (C^*)^n$, both Zariski closed and defined over $\bar{\mathbb{Q}}$, $\dim S = \dim T$, $\text{Exp}(S) \subset T$.

Then $T = \text{torsion translate of subtorus}$. Upcoming:
We use this to prove case (B) of Conjecture on $\Sigma_{i} k(X)$.

Nero Budur (KU Leuven)

Rank one local systems
(ii) Show that any irreducible component of $\Sigma^i_k(X)$ contains a torsion point.
(ii) Show that any irreducible component of $\Sigma^i_k(X)$ contains a torsion point. Using finite cyclic covers, the proof is then reduced to (i).
(ii) Show that any irreducible component of $\Sigma^i_k(X)$ contains a torsion point. Using finite cyclic covers, the proof is then reduced to (i).

Theorem (B - W):
(ii) Show that any irreducible component of $\Sigma^i_k(X)$ contains a torsion point. Using finite cyclic covers, the proof is then reduced to (i).

Theorem (B - W): If $S \subset \mathbb{C}^n$, $T \subset (\mathbb{C}^*)^n$,

$\text{Exp}(S) \subset T$.

Upcoming: We use this to prove case (B) of Conjecture on $\Sigma^i_k(X)$.

Rank one local systems
(ii) Show that any irreducible component of $\Sigma^i_k(X)$ contains a torsion point. Using finite cyclic covers, the proof is then reduced to (i).

Theorem (B - W): If $S \subset \mathbb{C}^n$, $T \subset (\mathbb{C}^*)^n$, both Zariski closed and defined over $\overline{\mathbb{Q}}$,

$\text{Exp}(S) \subset T$.

Upcoming: We use this to prove case (B) of Conjecture on $\Sigma^i_k(X)$.

Nero Budur (KU Leuven)
Rank one local systems
(ii) Show that any irreducible component of $\Sigma^i_k(X)$ contains a torsion point. Using finite cyclic covers, the proof is then reduced to (i).

Theorem (B - W): If $S \subset \mathbb{C}^n$, $T \subset (\mathbb{C}^*)^n$, both Zariski closed and defined over $\bar{\mathbb{Q}}$, $\dim S = \dim T$.
(ii) Show that any irreducible component of $\Sigma^i_k(X)$ contains a torsion point. Using finite cyclic covers, the proof is then reduced to (i).

Theorem (B - W): If $S \subset \mathbb{C}^n$, $T \subset (\mathbb{C}^*)^n$, both Zariski closed and defined over $\overline{\mathbb{Q}}$, $\dim S = \dim T$, $\text{Exp}(S) \subset T$.
(ii) Show that any irreducible component of $\Sigma^i_k(X)$ contains a torsion point. Using finite cyclic covers, the proof is then reduced to (i).

Theorem (B - W): If $S \subset \mathbb{C}^n$, $T \subset (\mathbb{C}^*)^n$, both Zariski closed and defined over $\bar{\mathbb{Q}}$, $\dim S = \dim T$, $\exp(S) \subset T$. Then $T =$ torsion translate of subtorus.
(ii) Show that any irreducible component of $\Sigma^i_k(X)$ contains a torsion point. Using finite cyclic covers, the proof is then reduced to (i).

Theorem (B - W): If $S \subset \mathbb{C}^n$, $T \subset (\mathbb{C}^*)^n$, both Zariski closed and defined over $\bar{\mathbb{Q}}$, $\dim S = \dim T$, $\text{Exp}(S) \subset T$. Then $T = \text{torsion translate of subtorus}$.

Upcoming: We use this to prove case (B) of Conjecture on $\Sigma^i_k(X)$.
6. A panorama of related results

Let X be smooth quasi-projective for now.
6. A panorama of related results

[Arapura-Dimca-Hain 2015]:

Let \(X = \text{smooth quasi-projective} \) for now.

[Arapura 1997]: One-to-one correspondence between irreducible positive-diml components of \(\Sigma_1^k(X) \) and fibrations from \(X \) onto smooth curves \(C \) with \(\chi(C) < 0 \).

[Dimca 2007]: Any irreducible comp of \(\Sigma_1^k(X) \) is also one for \(\Sigma_1^l(X) \) with \(l \leq k \).
6. A panorama of related results

\[\text{[Arapura-Dimca-Hain 2015]}: \quad \Sigma_k^1(X) \text{ for } X = \text{normal} \]
6. A panorama of related results

[Arapura-Dimca-Hain 2015]: $\Sigma_k^1(X)$ for $X = $ normal behaves as if X would be smooth.

Let $X = $ smooth quasi-projective for now.

[Dimca 2007]: Any irreducible comp of $\Sigma_k^1(X)$ is also one for $\Sigma_l^1(X)$ with $l \leq k$.
6. A panorama of related results

[Arapura-Dimca-Hain 2015]: $\Sigma^1_k(X)$ for $X = \text{normal}$ behaves as if X would be smooth.

Let $X = \text{smooth quasi-projective}$ for now.
6. A panorama of related results

[Arapura-Dimca-Hain 2015]: $\Sigma^1_k(X)$ for $X = \text{normal}$ behaves as if X would be smooth.

Let $X = \text{smooth quasi-projective}$ for now.

[Arapura 1997]:
6. A panorama of related results

[Arapura-Dimca-Hain 2015]: $\Sigma_k^1(X)$ for $X = \text{normal}$ behaves as if X would be smooth.

Let $X = \text{smooth quasi-projective}$ for now.

[Arapura 1997]: One-to-one correspondence between irreducible positive-diml components of $\Sigma_1^1(X)$
6. A panorama of related results

[Arapura-Dimca-Hain 2015]: $\Sigma^1_k(X)$ for $X = \text{normal}$ behaves as if X would be smooth.

Let $X = \text{smooth quasi-projective}$ for now.

[Arapura 1997]: One-to-one correspondence between irreducible positive-diml components of $\Sigma^1_1(X)$ and fibrations from X onto smooth curves C with $\chi(C) < 0$.
6. A panorama of related results

[Arapura-Dimca-Hain 2015]: $\Sigma_k^1(X)$ for $X = \text{normal}$ behaves as if X would be smooth.

Let $X = \text{smooth quasi-projective}$ for now.

[Arapura 1997]: One-to-one correspondence between irreducible positive-diml components of $\Sigma_1^1(X)$ and fibrations from X onto smooth curves C with $\chi(C) < 0$.

[Dimca 2007]:

Nero Budur (KU Leuven)
6. A panorama of related results

[Arapura-Dimca-Hain 2015]: \(\Sigma_k^1(X) \) for \(X = \) normal behaves as if \(X \) would be smooth.

Let \(X = \) smooth quasi-projective for now.

[Arapura 1997]: One-to-one correspondence between irreducible positive-diml components of \(\Sigma_1^1(X) \) and fibrations from \(X \) onto smooth curves \(C \) with \(\chi(C) < 0 \).

[Dimca 2007]: Any irreducible comp of \(\Sigma_k^1(X) \) is also one for \(\Sigma_l^1(X) \) with \(l \leq k \).
Any two distinct irreducible components of $\Sigma^k(X)$ intersect in at most finitely many points (torsion).

Any point in the intersection of an irreducible component of $\Sigma^k(X)$ with a distinct irreducible component of $\Sigma^l(X)$ lies in $\Sigma^k(X) + \Sigma^l(X)$.

If X is smooth projective, then $\text{codim} \Sigma^i(X) \geq 2(|i - n| - \delta(X))$, where $\delta(X)$ is the defect of semi-smallness of the Albanese map of X.

Nero Budur (KU Leuven)
Rank one local systems
[Dimca-Papadima-Suciu 2008]:

Any two distinct irreducible components of $\Sigma^1_k(X)$ intersect in at most finitely many points (torsion).

[Artal Bartolo-et-al 2013]:

Any point in the intersection of an irreducible component of $\Sigma^1_k(X)$ with a distinct irreducible component of $\Sigma^1_l(X)$ lies in Σ^1_{k+l}.

[Popa-Schnell 2013]:

If X is smooth projective, then $\text{codim} \Sigma^i_1(X) \geq 2(|i-n| - \delta(X))$, where $\delta(X)$ is the defect of semi-smallness of the Albanese map of X.

Nero Budur (KU Leuven)

Rank one local systems
[Dimca-Papadima-Suciu 2008]: Any two distinct irreducible comps of $\Sigma^1_k(X)$ intersect in at most finitely many points (torsion).
[Dimca-Papadima-Suciu 2008]: Any two distinct irreducible comps of $\Sigma^1_k(X)$ intersect in at most finitely many points (torsion).

[Artal Bartolo-et-all 2013]:
[Dimca-Papadima-Suciu 2008]: Any two distinct irreducible comps of $\Sigma^1_k(X)$ intersect in at most finitely many points (torsion).

[Artal Bartolo-et-all 2013]: Any point in the intersection of an irreducible comp of $\Sigma^1_k(X)$ with a distinct irreducible comp of Σ^1_l
[Dimca-Papadima-Suciu 2008]: Any two distinct irreducible combs of $\Sigma^1_k(X)$ intersect in at most finitely many points (torsion).

[Artal Bartolo-et-al 2013]: Any point in the intersection of an irreducible comp of $\Sigma^1_k(X)$ with a distinct irreducible comp of Σ^1_l lies in Σ^1_{k+l}.
[Dimca-Papadima-Suciu 2008]: Any two distinct irreducible comps of $\Sigma_1^k(X)$ intersect in at most finitely many points (torsion).

[Artal Bartolo-et-all 2013]: Any point in the intersection of an irred comp of $\Sigma_1^k(X)$ with a distinct irred comp of Σ_1^l lies in Σ_1^{k+l}.

[Popa-Schnell 2013]:
[Dimca-Papadima-Suciu 2008]: Any two distinct irreducible comps of $\Sigma^1_k(X)$ intersect in at most finitely many points (torsion).

[Artal Bartolo-et-all 2013]: Any point in the intersection of an irred comp of $\Sigma^1_k(X)$ with a distinct irred comp of Σ^1_l lies in Σ^1_{k+l}.

[Popa-Schnell 2013]: If $X = \text{smooth projective}$,
[Dimca-Papadima-Suciu 2008]: Any two distinct irreducible comps of $\Sigma^1_k(X)$ intersect in at most finitely many points (torsion).

[Artal Bartolo-et-all 2013]: Any point in the intersection of an irred comp of $\Sigma^1_k(X)$ with a distinct irred comp of Σ^1_l lies in Σ^1_{k+l}.

[Popa-Schnell 2013]: If $X = $ smooth projective, then $\text{codim } \Sigma^i_1(X) \geq 2(|i - n| - \delta(X))$, where $\delta(X)$ is the defect of semi-smallness of the Albanese map of X.
[Dimca-Papadima-Suciu 2008]: Any two distinct irreducible comps of $\Sigma^1_k(X)$ intersect in at most finitely many points (torsion).

[Artal Bartolo-et-all 2013]: Any point in the intersection of an irreducible comp of $\Sigma^1_k(X)$ with a distinct irreducible comp of Σ^1_l lies in Σ^1_{k+l}.

[Popa-Schnell 2013]: If $X =$ smooth projective, then

$$\text{codim } \Sigma^i_1(X) \geq 2(|i - n| - \delta(X)),$$

where $\delta(X)$ is the defect of semi-smallness of the Albanese map of X.

Nero Budur (KU Leuven)
Rank one local systems
If X = compact complex torus, $K \in \text{Perv}(X)$ coming from a polarizable real Hodge module,

$$\Sigma_i^k(X, K) := \{ \rho \in M_{MB}(X) \mid \text{dim} \text{H}^i(X, K \otimes \mathbb{C}L) \geq k \},$$

then $\Sigma_i^k(X, K)$ is a finite union of translated subtori. This is a counterpart of an older result for affine complex tori:

[Rank one local systems]
[Wang 2013, Pareschi-Popa-Schnell 2015]: If $X =$ compact complex torus,

then $\Sigma^i_k(X, K)$ is a finite union of translated subtori.

This is a counterpart of an older result for affine complex tori:
[Wang 2013, Pareschi-Popa-Schnell 2015]: If $X =$ compact complex torus, $K \in Perv(X)$

complex torus, $K \in Perv(X)$
[Wang 2013, Pareschi-Popa-Schnell 2015]: If $X = \text{compact complex torus}$, $K \in Perv(X)$ coming from a polarizable real Hodge module,

then $\Sigma^i_k(X, K)$ is a finite union of translated subtori.

This is a counterpart of an older result for affine complex tori: Nero Budur (KU Leuven) Rank one local systems
[Wang 2013, Pareschi-Popa-Schnell 2015]: If $X =$ compact complex torus, $K \in \text{Perv}(X)$ coming from a polarizable real Hodge module,

$$
\Sigma^i_k(X, K) := \{ \rho \in M_B(X) \mid \dim H^i(X, K \otimes_{\mathbb{C}} L) \geq k \},
$$

then $\Sigma^i_k(X, K)$ is a finite union of translated subtori.

This is a counterpart of an older result for affine complex tori:
[Wang 2013, Pareschi-Popa-Schnell 2015]: If $X = \text{compact complex torus}$, $K \in \text{Perv}(X)$ coming from a polarizable real Hodge module,

$$
\Sigma^i_k(X, K) := \{ \rho \in M_B(X) \mid \dim H^i(X, K \otimes \mathbb{C} L) \geq k \},
$$

then $\Sigma^i_k(X, K)$ is a finite union of translated subtori.
[Wang 2013, Pareschi-Popa-Schnell 2015]: If X is a compact complex torus, $K \in \text{Perv}(X)$ coming from a polarizable real Hodge module,

$$\Sigma^i_k(X, K) := \{ \rho \in M_B(X) \mid \dim H^i(X, K \otimes_{\mathbb{C}} L) \geq k \},$$

then $\Sigma^i_k(X, K)$ is a finite union of translated subtori.

This is a counterpart of an older result for affine complex tori:
[Gabber-Loeser 1996]:

\[
\text{If } X = (\mathbb{C}^*)^n, \quad K \in \mathcal{Perv}(X), \quad \text{then } \sum i(k)(X, K) \text{ is a finite union of translated subtori, and } \text{codim } \sum i(k)(X, K) \geq \text{some expression}.
\]

Corollary [Loeser-Sabbah 1991]:

If \(X(\mathcal{d}) \subset (\mathbb{C}^*)^n \) is a closed subvariety such that \(X[\mathcal{d}] = \text{a perverse sheaf} \) (e.g. \(X = \text{lci} \)), then \((-1)^d \chi(X) \geq 0 \).

[Huh-Sturmfels 2013]:

Conjectured same for any closed subvariety \(X \subset (\mathbb{C}^*)^n \).

Inspired by another conjecture:

\[
\text{MLdeg}(X) \geq (-1)^d \chi(X).
\]

MLdeg: the number of critical points of the likelihood function \(l_\alpha(x) = \prod_{n=1}^x \alpha_i^i \) for random data \(\alpha \in \mathbb{C}^r \).
[Gabber-Loeser 1996]: If $X = (\mathbb{C}^*)^n$,

$K \in Perv\left(X, (\mathbb{C}^*)^n\right)$, then

$\sum_{i} k_{i}(X, K)$ is a finite union of translated subtori,

and $\text{codim} \sum_{i} k_{i}(X, K) \geq i$.

Corollary [Loeser-Sabbah 1991]: If $X(d) \subset (\mathbb{C}^*)^n$ closed subvariety such that $C_X[d] = \text{perverse sheaf}$ (e.g. $X = \text{lci}$), then

$(-1)^d \chi(X) \geq 0$.

[Huh-Sturmfels 2013]: Conjectured same for any closed subvariety $X \subset (\mathbb{C}^*)^n$.

Inspired by another conjecture:

$\text{MLdeg}(X) \geq (-1)^d \chi(X)$.

$\text{MLdeg}(X)$ of a statistical model X is the number of critical points of the likelihood function $l_{\alpha}(x) = \prod_{i=1}^{n} x_{\alpha_i}^{i}$ for random data $\alpha \in \mathbb{C}^r$.
[Gabber-Loeser 1996]: If $X = (\mathbb{C}^*)^n$, $K \in Perv(X)$,
[Gabber-Loeser 1996]: If $X = (\mathbb{C}^*)^n$, $K \in Perv(X)$, then $\Sigma^i_k(X, K)$ is a finite union of translated subtori,
[Gabber-Loeser 1996]: If $X = (\mathbb{C}^*)^n$, $K \in Perv(X)$, then $\Sigma^i_k(X, K)$ is a finite union of translated subtori, and \text{codim } \Sigma^i_k(X, K) \geq i.$
[Gabber-Loeser 1996]: If $X = (\mathbb{C}^*)^n$, $K \in Perv(X)$, then $\Sigma_i^k(X, K)$ is a finite union of translated subtori, and codim $\Sigma_i^k(X, K) \geq i$.

Corollary [Loeser-Sabbah 1991]:
[Gabber-Loeser 1996]: If $X = (\mathbb{C}^*)^n$, $K \in Perv(X)$, then $\Sigma^i_k(X, K)$ is a finite union of translated subtori, and codim $\Sigma^i_k(X, K) \geq i$.

Corollary [Loeser-Sabbah 1991]: If $X^{(d)} \subset (\mathbb{C}^*)^n$ closed subvariety
[Gabber-Loeser 1996]: If $X = (\mathbb{C}^*)^n$, $K \in Perv(X)$, then $\Sigma^i_k(X, K)$ is a finite union of translated subtori, and codim $\Sigma^i_k(X, K) \geq i$.

Corollary [Loeser-Sabbah 1991]: If $X^{(d)} \subset (\mathbb{C}^*)^n$ closed subvariety such that $\mathbb{C}_X[d] = \text{ perverse sheaf}$
[Gabber-Loeser 1996]: If $X = (\mathbb{C}^*)^n$, $K \in \text{Perv}(X)$, then $\Sigma^i_k(X, K)$ is a finite union of translated subtori, and codim $\Sigma^i_k(X, K) \geq i$.

Corollary [Loeser-Sabbah 1991]: If $X^{(d)} \subset (\mathbb{C}^*)^n$ closed subvariety such that $\mathbb{C}_X[d] = \text{perverse sheaf}$ (eg. $X = \text{lci}$)
[Gabber-Loeser 1996]: If $X = (\mathbb{C}^*)^n$, $K \in Perv(X)$, then $\Sigma^i_k(X, K)$ is a finite union of translated subtori, and $\operatorname{codim} \Sigma^i_k(X, K) \geq i$.

Corollary [Loeser-Sabbah 1991]: If $X^{(d)} \subset (\mathbb{C}^*)^n$ closed subvariety such that $\mathcal{C}_X[d] = \text{perverse sheaf (eg. } X = \text{lci)}$, then $(-1)^d \chi(X) \geq 0$.

Nero Budur (KU Leuven)

Rank one local systems
[Gabber-Loeser 1996]: If $X = (\mathbb{C}^*)^n$, $K \in Perv(X)$, then $\Sigma^1_i(X, K)$ is a finite union of translated subtori, and codim $\Sigma^1_i(X, K) \geq i$.

Corollary [Loeser-Sabbah 1991]: If $X^{(d)} \subset (\mathbb{C}^*)^n$ closed subvariety such that $\mathbb{C}_X[d] = $ perverse sheaf (eg. $X = \text{lci}$), then $(-1)^d\chi(X) \geq 0$.

[Huh-Sturmfels 2013]:
[Gabber-Loeser 1996]: If $X = (\mathbb{C}^*)^n$, $K \in Perv(X)$, then $\Sigma_{k}^{i}(X, K)$ is a finite union of translated subtori, and codim $\Sigma_{k}^{i}(X, K) \geq i$.

Corollary [Loeser-Sabbah 1991]: If $X^{(d)} \subset (\mathbb{C}^*)^n$ closed subvariety such that $\mathbb{C}_X[d] =$ perverse sheaf (eg. $X = \text{lci}$), then $(-1)^d \chi(X) \geq 0$.

[Huh-Sturmfels 2013]: Conjectured same for any closed subvariety $X \subset (\mathbb{C}^*)^n$.

Nero Budur (KU Leuven) | Rank one local systems
[Gabber-Loeser 1996]: If $X = (\mathbb{C}^*)^n$, $K \in Perv(X)$, then $\Sigma_k^i(X, K)$ is a finite union of translated subtori, and $\text{codim} \Sigma_k^i(X, K) \geq i$.

Corollary [Loeser-Sabbah 1991]: If $X^{(d)} \subset (\mathbb{C}^*)^n$ closed subvariety such that $\mathbb{C}_X[d] = \text{perverse sheaf}$ (e.g. $X = \text{lci}$), then $(-1)^d \chi(X) \geq 0$.

[Huh-Sturmfels 2013]: Conjectured same for any closed subvariety $X \subset (\mathbb{C}^*)^n$. Inspired by another conjecture: $MLdeg(X) \geq (-1)^d \chi(X)$.
[Gabber-Loeser 1996]: If $X = (\mathbb{C}^*)^n$, $K \in \text{Perv}(X)$, then $\Sigma^i_k(X, K)$ is a finite union of translated subtori, and codim $\Sigma^i_k(X, K) \geq i$.

Corollary [Loeser-Sabbah 1991]: If $X^{(d)} \subset (\mathbb{C}^*)^n$ closed subvariety such that $\mathcal{C}_X[d] = \text{perverse sheaf}$ (eg. $X = \text{lci}$), then $(-1)^d \chi(X) \geq 0$.

[Huh-Sturmfels 2013]: Conjectured same for any closed subvariety $X \subset (\mathbb{C}^*)^n$. Inspired by another conjecture: $\text{MLdeg}(X) \geq (-1)^d \chi(X)$.

MLdeg(X) of a statistical model X
[Gabber-Loeser 1996]: If $X = (\mathbb{C}^*)^n$, $K \in Perv(X)$, then $\Sigma^i_k(X, K)$ is a finite union of translated subtori, and $\text{codim} \Sigma^i_k(X, K) \geq i$.

Corollary [Loeser-Sabbah 1991]: If $X^{(d)} \subset (\mathbb{C}^*)^n$ closed subvariety such that $\mathbb{C}_X[d] = \text{perverse sheaf}$ (eg. $X = \text{lci}$), then $(-1)^d \chi(X) \geq 0$.

[Huh-Sturmfels 2013]: Conjectured same for any closed subvariety $X \subset (\mathbb{C}^*)^n$. Inspired by another conjecture: $\text{MLdeg}(X) \geq (-1)^d \chi(X)$.

$\text{MLdeg}(X)$ of a statistical model X is the number of critical points of the likelihood function $l_{\alpha}(x) = \prod_{i=1}^n x_i^{\alpha_i}$ for random data $\alpha \in \mathbb{C}^r$.

Nero Budur (KU Leuven)
Rank one local systems
[Budur - Wang 2014]: Counterexamples to both conjectures.

Moreover, $\text{MLdeg}(X) \geq \left(-1 \right)^d \chi(X)$ for all closed subvarieties $X \subset (\mathbb{C}^*)^n$.

Note: from the result of Gabber-Loeser, one has $\left(-1 \right)^d \chi(X) \geq 0$.

So intersection cohomology and perverse sheaves theory of Goresky and MacPherson is relevant to statistics!

Thank you for your attention!
[Budur - Wang 2014]: Counterexamples to both conjectures.

Moreover, $MLdeg(X) \geq (-1)^d I\chi(X)$ for all closed subvarieties $X \subset (\mathbb{C}^*)^n$.

Note: from the result of Gabber-Loeser, one has $(-1)^d I\chi(X) \geq 0$. So intersection cohomology and perverse sheaves theory of Goresky and MacPherson is relevant to statistics!
[Budur - Wang 2014]: Counterexamples to both conjectures.

Moreover, $MLdeg(X) \geq (-1)^d I\chi(X)$ for all closed subvarieties $X \subset (\mathbb{C}^*)^n$.

Note: from the result of Gabber-Loeser, one has $(-1)^d I\chi(X) \geq 0$.
[Budur - Wang 2014]: Counterexamples to both conjectures.

Moreover, $MLdeg(X) \geq (-1)^d I\chi(X)$ for all closed subvarieties $X \subset (\mathbb{C}^*)^n$.

Note: from the result of Gabber-Loeser, one has $(-1)^d I\chi(X) \geq 0$.

So intersection cohomology and perverse sheaves theory of Goresky and MacPherson is relevant to statistics! 😊
[Budur - Wang 2014]: Counterexamples to both conjectures.

Moreover, $MLdeg(X) \geq (-1)^d I\chi(X)$ for all closed subvarieties $X \subset (\mathbb{C}^*)^n$.

Note: from the result of Gabber-Loeser, one has $(-1)^d I\chi(X) \geq 0$.

So intersection cohomology and perverse sheaves theory of Goresky and MacPherson is **relevant to statistics! 🥰**

Thank you for your attention!