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Abstract. Consider a linear realization of a matroid over a field.
One associates to it a configuration polynomial and bilinear form
with polynomial coefficients. The corresponding configuration hy-
persurface and its non-smooth locus support the respective first
and second degeneracy scheme of the bilinear form.

We describe the effect of matroid connectivity on these schemes:
For (2-)connected matroids, the configuration hypersurface is inte-
gral, and the second degeneracy scheme is reduced Cohen–Macaulay
of codimension 3. If the matroid is 3-connected, then also the sec-
ond degeneracy scheme is integral.

In the process, we describe the behavior of configuration poly-
nomials, forms and schemes with respect to various matroid con-
structions.
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1. Introduction

1.1. Feynman diagrams. A fundamental problem in high-energy physics
is to understand the scattering of particles. The basic tool for theo-
retical predictions is the Feynman diagram with underlying Feynman
graph G “ pV,Eq. The scattering data correspond to Feynman am-
plitudes, integrals computed in the positive orthant of the projective
space labeled by the internal edges of the Feynman graph. The in-
tegrand is a rational function in the edge variables xe, e P E, that
depends parametrically on the masses and moments of the involved
particles (see [Bro17]).

The convergence of a Feynman amplitude is determined by the struc-
ture of the denominator, which in any case involves (a power of) the
Symanzik polynomial

ř

T

ś

eRT xe of G where T runs through the span-
ning trees of G. For graphs with edge number less than twice the
loop number the denominator also involves (a power of) the second
Symanzik polynomial obtained by summing over 2-forests and involves
masses and moments. Symanzik polynomials can factor, and the sin-
gularities and intersections of the individual components determine the
convergence of the Feynman amplitudes.

Remarkably, amplitudes tend to involve values of the Riemann zeta
function, or more generally multiple zeta values and polylogarithms. In
[BK97], Broadhurst and Kreimer display a large body of computational
evidence that in the last to decades has become ever more impressive.
Viewing amplitudes as periods, Kontsevich speculated that Symanzik
polynomials, or equivalently their cousins the Kirchhoff polynomials

ψGpxq “
ÿ

T

ź

ePT

xe,

with the sum again taken over the spanning trees of G, be mixed Tate;
this would imply the relation to multiple zeta values. However, Belkale
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and Brosnan [BB03] proved that the collection of Kirchhoff polynomi-
als is a rather complicated class of singularities: in finite characteris-
tic, the counting function on the affine complements cannot always be
polynomial in the size of the field. This does not exactly rule out that
Feynman amplitudes are well-behaved, but makes it rather more un-
likely. On the other hand, it makes the study of these singularities, and
especially any kind of uniformity results, that much more interesting.

The influential paper [BEK06] of Bloch, Esnault and Kreimer gen-
erated a significant amount of work from the point of view of complex
geometry: we refer to the book [Mar10] of Marcolli for exposition, as
well as [Bro17; Dor11; BW10]. Varying ideas of Connes and Kreimer on
renormalization that view Feynman integrals as specializations of the
Tutte polynomial, Aluffi and Marcolli formulate in [AM11b; AM11a]
parametric Feynman integrals as periods, leading to motivic studies
on cohomology. On the explicit side, there is a large body of publi-
cations in which specific graphs and their polynomials and amplitudes
are discussed. But, as Brown writes in [Bro15], while a diversity of
techniques is used to study Feynman diagrams, “each new loop order
involves mathematical objects which are an order of magnitude more
complex than the last, [. . . ] the unavoidable fact is that arbitrary
amplitudes remain out of reach as ever.”

The present article can be seen as the first step towards a search for
uniform properties in this zoo of singularities. We view it as a stepping
stone for further studies of invariants such as log canonical threshold,
logarithmic differential forms and embedded resolution of singularities.

1.2. Configuration polynomials. The main idea of Belkale and Bros-
nan is to move the burden of proof into the more general realm of
polynomials and constructible sets derived from matroids rather than
graphs, and then to reduce to known facts about such polynomials.
The article [BEK06] casts Kirchhoff and Symanzik polynomials as very
special instances of configuration polynomials ; this idea was further de-
veloped in [Pat10]. We consider this as a more natural setting since
notions such as duality and truncation behave well for configuration
polynomials as a whole, but these operations do not preserve the sub-
family of matroids derived from graphs. In particular, we can focus ex-
clusively on Kirchhoff/configuration polynomials, since the Symanzik
polynomial of G appears as the configuration polynomial of the dual
configuration induced by the incidence matrix of G.

The configuration polynomial does not depend on a matroid itself
but on a configuration, that is, on a linear realization of a matroid over
a field K. The same matroid can admit different realizations, which,
in turn, give rise to different configuration polynomials (see Exam-
ple 5.3). The matroid (basis) polynomial is a competing object, which
is assigned to any, even non-realizable, matroid. It has proven useful
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for combinatorial applications (see [AGV18; Piq19]). For graphs and,
more generally, regular matroids, all configuration polynomials essen-
tially agree with the matroid polynomial. However, they are different
in general (see Example 5.2).

Configuration polynomials have better geometric properties than
matroid polynomials: Generalizing the matrix-tree theorem, the config-
uration polynomial arises as the determinant of a symmetric bilinear
configuration form with linear polynomial coefficients. As a conse-
quence, the corresponding configuration hypersurface maps naturally
to the generic symmetric determinantal variety. In the present arti-
cle, we establish further uniform, geometric properties of configuration
polynomials, which do not hold for matroid polynomials in general.

1.3. Summary of results. Some indication of what is to come can be
gleaned from the following note by Marcolli in [Mar10, p. 71]: “graph
hypersurfaces tend to have singularity loci of small codimension”.

Let W Ď KE be a realization of a matroid M on a set E. Fix coor-
dinates xE “ pxeqePE. There is an associated configuration polynomial
ψW P KrxEs and configuration (bilinear) form QW (see Definitions 3.2
and 3.21). They are related by ψW “ detQW (see Lemma 3.24). The
configuration hypersurface XW Ď KE defined by ψW can thus be seen
as the first degeneracy scheme of QW (see Definition 4.7). The second
degeneracy scheme ∆W Ď KE defined by the submaximal minors of
QW is a subscheme of the Jacobian scheme ΣW Ď KE of XW defined
by the partial derivatives of ψW (see Lemma 4.10). The latter defines
the non-smooth locus of XW (see Remark 4.8). Patterson showed ΣW

and ∆W have the same underlying reduced scheme (see Theorem 4.13),
that is,

∆W Ď ΣW Ď KE, Σred
W “ ∆red

W .

He mentions that he does not know the reduced scheme structure (see
[Pat10, p. 696]). We show that ΣW is not reduced in general (see Exam-
ple 5.1), whereas ∆W often is. Our main results from Theorems 4.23,
4.34 and 4.37 can be summarized as follows.

Main Theorem. Let M be a connected matroid of rank rkM ě 2 on
the set E with a linear realization W Ď KE over a field K. Then
∆W “ Σred

W is the non-smooth locus of XW over K. It is Cohen–
Macaulay of codimension 3 in KE. Unless K has characteristic 2, ΣW

is generically reduced. If M is 3-connected, then ∆W is integral and
ΣW is irreducible. �

In case rkM “ 1 the polynomial ψW is linear and hence ∆W “ ΣW “

H (see Remark 4.11.(a)). If M arises from adding (co)loops to a con-
nected matroid, then reducedness of ∆W persists (see Corollary 4.35).
However if M is disconnected even when loops are removed, then ΣW

and hence ∆W has codimension 2 in KE (see Remark 4.9).
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While our main objective is to establish the results above, along the
way we continue the systematic study of configuration polynomials in
the spirit of [BEK06; Pat10]. For instance, we describe the behavior of
configuration polynomials with respect to connectedness, duality, dele-
tion/contraction and 2-separations (see Propositions 3.10, 3.12, 3.14
and 3.27). Patterson showed that the second Symanzik polynomial as-
sociated with a Feynman graph is, in fact, a configuration polynomial:
we note that the underlying matroid is a truncation of the circuit ma-
troid of the graph, parameterized by the momentum parameters (see
Proposition 3.20).

1.4. Outline of the proof. The proof of the Main Theorem inter-
twines methods from matroid theory, commutative algebra and alge-
braic geometry. In order to keep our arguments self-contained and
accessible, we recall preliminaries from each of these subjects and give
detailed proofs (see §2.1, §2.3 and §4.1).

An important commutative algebra ingredient is a result of Kutz (see
[Kut74]). It bounds the grade of an ideal of submaximal minors of a
symmetric matrix by 3 and yields perfection in case of equality. Kutz’
result applies to the defining ideal of ∆W . The codimension of ∆W in
KE is therefore bounded by 3 and ∆W is Cohen–Macaulay in case of
equality (see Proposition 4.16). In particular ∆W is pure-dimensional
and hence reduced if generically reduced. Due to Patterson’s result ΣW

is equidimensional in this case.
On the matroid side our approach makes use of handles (see Defini-

tion 2.2), which are called ears in case of graphic matroids. A handle
decomposition builds up any connected matroid from a circuit by suc-
cessively attaching handles (see Proposition 2.5). Conversely this yields
for any connected matroid which is not a circuit a non-disconnective
handle which leaves the matroid connected when deleted (see Defini-
tion 2.2). This allows one to prove statements on connected matroids
by induction.

We describe the effect of deletion and contraction of a handle H
to the configuration polynomial (see Corollary 3.15). In case the Ja-
cobian scheme ΣW zH associated with the deletion MzH has codimen-
sion at least 3 we prove the same for ΣW (see Lemma 4.21). Applied
to a non-disconnective H it follows with Patterson’s result that ∆W

reaches the dimension bound and is thus Cohen–Macaulay of codimen-
sion 3 (see Theorem 4.23). We further identify 3 (more or less explicit)
types of generic points with respect to a non-disconnective handle (see
Corollary 4.24).

In case chK ‰ 2 generic reducedness of ΣW implies (generic) re-
ducedness of ∆W . The schemes ΣW and ∆W show similar behavior
with respect to deletion and contraction (see Lemmas 4.28 and 4.30).
As a consequence generic reducedness can be proved along the same
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lines (see Theorem 4.34). In both cases we have to show reducedness
at all (the same) generic points. Our proof proceeds by induction over
the cardinality of the matroid’s underlying set and makes use of the
handle decomposition.

In a first base case where the matroid is a single circuit, generic
reducedness can be shown directly (see Lemma 4.32). In the other
case the handle decomposition provides a non-disconnective handle H,
which leaves the matroid connected when deleted (see Definition 2.2).
In case H “ thu is a handle of size 1, we show that ΣW or ∆W inherits
reducedness from the corresponding scheme ΣW zh or ∆W zh associated
with the deletion Mzh (see Lemma 4.29).

The non-disconnective handle H provided by the handle decomposi-
tion is not unique. This leads us to consider non-disconnective handles
independently of a handle decomposition. They turn out to be special
instances of maximal handles which form the handle partition of the
matroid (see Lemma 2.3). As a purely matroid-theoretic ingredient
we show that the number of non-disconnective handles is strictly in-
creasing when adding handles (see Proposition 2.8). This leads us to
identify the prism matroid as a second base case (see Definition 2.18).
Its handle partition consists of 3 non-disconnective handles of size 2 (see
Lemmas 2.7 and 2.19). Here an explicit calculation shows that ∆W is
reduced in the torus pK˚q6 (see Lemma 4.27). The corresponding result
for ΣW holds if chK ‰ 2.

In the remaining case we use blowing-up, an ingredient from algebraic
geometry. To this end we prove a result that recovers generic reduced-
ness of a ring R along the subscheme defined by an ideal ICR (see Defi-
nition 4.3) from generic reducedness of the associated graded ring grI R,
the ring of the corresponding normal cone (see Lemma 4.5). We apply
this result to the ring of ΣW or ∆W and a coordinate subscheme V pxF q
defined by xF for a partition E “ F \G (see Lemma 4.31). In this case
the graded ring identifies with the ring of the respective scheme ΣW {G

or ∆W {G associated with the contraction M{G (see Lemma 4.30). Since
we are assuming now that all non-disconnective handles H have size
at least 2 there are at least 3 more edges than maximal handles (see
Proposition 2.8). The case of equality is that of the prism matroid (see
Lemmas 2.7 and 2.19). Using this inequality we construct a suitable
partition E “ F\G for which all generic points of ΣW or ∆W are along
V pxF q if the matroid is not the prism (see Lemma 4.33). This yields
generic reducedness of ΣW or ∆W in this case. A slight modification of
the approach finally covers the generic points outside the torus pK˚q6

in case of the prism matroid.
Finally consider 3-connected matroids M with |E| ą 3. Here we

prove that ΣW is irreducible, which implies that ∆W is integral (see
Theorem 4.37). We first observe that handles of (co)size at least 2 yield
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2-separations (see Lemma 2.3.(e)). It follows that the handle decom-
position consists entirely of non-disconnective 1-handles (see Proposi-
tion 2.4) and that all generic points of ΣW lie in TE (see Corollary 4.26).
We show that the number of generic points is bounded by that of ΣW ze

for all e P E (see Lemma 4.29). Duality switches deletion and contrac-
tion and identifies generic points of ΣW and ΣWK (see Corollary 4.15).
Using Tutte’s Wheels and Whirls Theorem this reduces irreducibility
of ΣW to the case where M is a wheel or whirl (see Lemma 4.38). We
show that the n-wheel and n-whirl have the same configuration schemes
XW , ΣW and ∆W independent of W up to isomorphism (see Propo-
sition 4.40). An induction on n with an explicit study of base cases
finishes the proof (see Corollary 4.41 and Lemma 4.43).

Acknowledgments. The project whose results are presented here
started with a research in pairs at the Centro de Giorgi in Pisa in
February 2018. We thank the institute for a pleasant stay in a stim-
ulating research environment. We thank Aldo Conca, Delphine Pol,
Darij Grinberg and Raul Epure for helpful comments.

2. Matroids and realizations

Our algebraic objects of interest are associated to a realization of
a matroid. In this section we prepare the path for an inductive ap-
proach driven by the underlying matroid structure. Our main tool is
the handle decomposition, a matroid version of the ear decomposition
of graphs.

2.1. Matroid basics. In the following we review the relevant basics
of matroid theory using Oxley’s book (see [Oxl11]) as a comprehensive
reference.

Let M be a matroid on a set E “: EM. This consists of several col-
lections of subsets of E which satisfy certain axioms, any one of which
determine the others. In particular, these include the independent sets,
denoted IM Ď 2E, the bases, BM Ď 2E, and the circuits, CM Ď 2E. By
definition, the bases and circuits are respectively maximal independent
and minimal dependent sets of 2EzIM with respect to inclusion. By
an n-circuit we mean a circuit with n elements, 3-circuits are called
triangles.

The circuits define an equivalence relation on E where e, f P E are
equivalent if e, f P C for some C P CM (see [Oxl11, Prop. 4.1.2]). The
corresponding equivalence classes are the connected components of M.
If such a component is unique M is said to be connected.

An element e P E is a loop in M if e R B for any B P BM, and a
coloop if e P B for all B P BM. A matroid is free if every element is a
coloop.
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There is a rank function rkM : 2E Ñ N for which, in particular,

S P IM ðñ rkMpSq “ |S|.

By definition, rkM “ rkMpEq.
The connectivity function λM : 2E Ñ N is defined by

λMpSq :“ rkpSq ` rkpEzSq ´ rkpMq

for any S Ď E. For k ą 0 a subset S Ď E is called a k-separation if

λMpSq ă k ď min t|S|, |EzS|u.

The matroid M is said to be k-connected if it has no pk´1q-separations.
In this case, a k-separation is called exact. Connectedness is the special
case k “ 2. It is not hard to show that k-connectedness is equivalent
for M and MK (see [Oxl11, Cor. 8.1.5]).

Here are some standard constructions of new matroids from old:
The direct sum M1 ‘M2 of matroids M1 and M2 is the matroid on

EM1 \ EM2 with independent sets

IM1‘M2 :“ tI1 \ I2 | I1 P IpM1q, I2 P IpM2qu.

The sum is proper if EM1 ‰ H ‰ EM2 . Connectedness means that a
matroid is not a proper direct sum (see [Oxl11, Cor. 4.2.9]).

For any subset F Ď E, the restriction matroid M|F is the matroid
on F defined by (see [Oxl11, 3.1.12])

(2.1) IM|F :“ tI X F | I P IMu.

Its set of circuits is (see [Oxl11, 3.1.13])

(2.2) CM|F “ CM X 2F .

Thinking of restriction as an operation that deletes elements in F from
E, one defines the deletion matroid MzF :“ M|EzF . The contraction
matroid M{F on EzF is defined by (see [Oxl11, Prop. 3.1.7])

(2.3) IM{F :“ tI Ď EzF | I YB P IMu,

where B is any basis of M|F . Its circuits are the minimal non-empty
sets CzF where C P CM (see [Oxl11, Prop. 3.1.10]), that is,

(2.4) CM{F “ Min tCzF | F Ğ C P CMu.

Consider a bijection

(2.5) ν : E Ñ E_, e ÞÑ e_.

For any subset S Ď E, its complement in E can be identified with

SK :“ νpEzSq Ď E_.

Then the dual matroid MK is the matroid on E_ whose bases are given
by

BMK :“
 

BK
ˇ

ˇ B P BM

(

.
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In particular rkM ` rkMK “ |E| (see [Oxl11, p. 2.1.8]). The k-
connectivity of MK coincides with that of M (see [Oxl11, Cor. 8.1.5]).
For any subset F Ă E (see [Oxl11, Ex. 3.1.1]), one can identify

(2.6) pM{F qK “ MK
zF, pMzF qK “ MK

{F.

Various matroid data of MK is also considered as codata of M. A triad
of M is a 3-cocircuit of M, that is, a triangle of MK.

The (codimension-1) truncation of M is, by definition, the matroid
T pMq on E with independent sets

IT pMq :“ tS P IM | |S| ď rkM´ 1u.

Example 2.1 (Uniform matroids and circuits). The uniform matroid
of rank r ě 0 on a set E of size |E| “ n, denoted Ur,n, has bases
tB Ď E | |B| “ ru. It has no loops or coloops if 0 ă r ă n. By
definition, UKr,n “ Un´r,n for all 0 ď r ď n.

Informally we refer to a matroid M on E for which E P CM as a
circuit, or as a triangle if n “ 3. If |E| “ n, then Un´1,n is the unique
such matroid. ˛

2.2. Handle decomposition. In the following we investigate handles
as building blocks of connected matroids.

Definition 2.2 (Handles). Let M be a matroid. A subset H ‰ H Ď E
is a (proper) handle in M if C XH ‰ H implies H Ď C for all C P CM
(and H ‰ E). By a k-handle we mean a handle of size k. It is
disconnective if MzH is disconnected. A subset H ‰ H 1 Ď H of a
handle is called a subhandle. Maximality of handles refers to inclusion.
Write HM for the set of handles in M, MaxHM for its subset of maximal
handles. A handle H P HM is called separating if min t|H|, |EzH|u ě 2.

Singletons teu and subhandles are handles. If
Ť

CM ‰ E, then
Ez

Ť

CM P MaxHM and is a union of coloops. The maximal han-
dles in

Ť

CM are the minimal non-empty intersections of all subsets of
CM. Together they form the handle partition of E

E “
ğ

HPMaxHM

H,

which refines the partition of
Ť

CM into connected components.
For any subset F Ď E, HM X 2F Ď HM|F by (2.2).

Lemma 2.3. Let M be a matroid and H P HM.

(a) If H “ E, then M “ Ur,n where n “ |E| and r P tn´ 1, nu (see
Example 2.1). In the latter case |E| “ 1 or M is disconnected.

(b) Either H P IM or H P CM. In the latter case H is a connected
component of M. In particular, if M is connected and H is proper,
then H P IM and H Ĺ C for some circuit C P CM.

(c) For any H ‰ H 1 Ď H, HzH 1 consists of coloops in MzH 1. In
particular, non-disconnective handles are maximal.



10 G. DENHAM, M. SCHULZE, AND U. WALTHER

(d) If H R CM, then CM Ñ CM{H , C ÞÑ CzH, is a bijection. If
H R MaxHM, then MaxHM Ñ MaxHM{H , H 1 ÞÑ H 1zH, is a
bijection which identifies non-disconnective handles. In this case,
the connected components of M which are not contained in Hz

Ť

CM
correspond to the connected components of M{H.

(e) Suppose M is connected and H is proper. Then rkpM{Hq “ rkM´
|H| and λMpHq “ 1. In particular, if H is separating, then H \

pEzHq is a 2-separation of M.

Proof.
(a) Suppose H “ E. Then CM Ď tEu and M “ Un´1,n in case of

equality. Otherwise CM “ H implies BM “ tEu and M “ Un,n (see
[Oxl11, Prop. 1.1.6]).

(b) Suppose H R IM. Then there is a circuit H Ě C P CM. By
definition of handle and incomparability of circuits, H “ C is disjoint
from all other circuits and hence a connected component of M.

(c) Let d P HzH 1. If d is not a coloop in MzH 1, then d P C XH for
some C P CMzH 1 Ď CM (see (2.2)). Hence H 1 Ď H Ď C since H is a
handle, a contradiction.

(d) The first bijection follows from (2.4) with F “ H. The remaining
claims follow from the discussion preceding the lemma.

(e) Part (b) yields the first equality (see [Oxl11, Prop. 3.1.6]) along
with a circuit H ‰ C P CM. Now let B be a basis of MzH, and let
S “ B Y H. Clearly S spans M. For any e P H, we check Szteu is
independent: if not, Szteu contains a circuit C. Since C Ę B, we have
H X C ‰ H and hence e P H Ď C, a contradiction. It follows that
rkM “ |S|´1 “ rkpMzHq` |H|´1 and hence the second equality. �

Proposition 2.4. (Handles in 3-connected matroids) Let M be a 3-
connected matroid on E with |E| ą 3. Then all its handles are non-
disconnective 1-handles.

Proof. Let H P HM be any handle. By Lemma 2.3.(a), H must be
proper. Note that M cannot be a circuit and hence |EzH| ě 2 by
Lemma 2.3.(b). Then H is a 1-handle as otherwise H yields a 2-
separation of M by Lemma 2.3.(e).

Suppose that H is disconnective. Consider the deletion M1 :“ MzH
on the set E 1 :“ EzH. Pick a minimal connected component X of
M1. Since H ‰ H and |E| ą 3 both X Y H and its complement
EzpX YHq “ E 1zX have at least 2 elements.

Since X is a connected component of M1 and by Lemma 2.3.(e),

rkpXq ` rkpE 1zXq “ rkM1
“ rkM.

Since rkpX YHq ď rkpXq ` |H| “ rkX ` 1 it follows that

rkpX YHq ` rkpEzpX YHqq ď rkM` 1.

Whence X YH is a 2-separation, a contradiction. �
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The following result is the basis for our inductive approach to con-
nected matroids.

Proposition 2.5. (Handle decomposition) Let M be a connected ma-
troid and C1 P CM. Then there is a filtration C1 “ F1 Ĺ ¨ ¨ ¨ Ĺ Fk “ E
such that M|Fi

is connected and Hi :“ FizFi´1 P HM|Fi
, for i “ 2, . . . , k.

Proof. A handle (or ear) decomposition of a matroid M is a collection of
circuits C1, . . . , Ck such that, for Fi “

Ť

jďiCj we have CiXFi´1 ‰ H,

and CizFi´1 is a circuit in M{Fi´1 for i “ 2, . . . , k. If M is connected,
then M has a handle decomposition with arbitrary C1 (see [CH96]),
and the hypothesis Ci X Fi´1 ‰ H implies that M|Fi

is connected for
each i “ 1, . . . , k.

It remains to check that Hi is a handle in M|Fi
for i “ 2, . . . , k.

Since circuits are nonempty, H ‰ Hi Ĺ Fi. Now choose any e P Hi “

CizFi´1. If C is a circuit containing e, suppose by way of contradiction
that C Ğ Hi. Then there exists some d P CizpCYFi´1q. By the strong
circuit exchange axiom (see [Oxl11, §1.1, Ex. 14]), there is another
circuit C 1 contained in Fi for which d P C 1 Ď pC Y Ciqzteu. But then
C 1zFi´1 Ď CizFi´1 because C 1 Ď Fi. Since Ci is assumed to be a circuit
of M{Fi´1, it follows that either C 1 Ď Fi´1 or C 1zFi´1 “ CizFi´1 (see
(2.4)). The former is impossible because C 1 Q d R Fi´1, and the latter
is impossible because C 1 Y Fi´1 S e P Ci. �

In the sequel we develop a bound for the number of non-disconnective
handles.

Lemma 2.6. Let M be a connected matroid.

(a) If H P HM and H 1 P HMzH are non-disconnective with H Y H 1 ‰

E, then there is a non-disconnective handle H2 P HM for which
H2 Ď H 1, with equality if H 1 P HM.

(b) If H,H 1 P HM with E ‰ H Y H 1 P CM, then H and H 1 are not
disconnective.

Proof.
(a) By hypothesis, M and MzH are connected and H Y H 1 ‰ E.

Then, using that H and H 1 are handles, there are circuits C P CM and
C 1 P CMzH with H Ĺ C and H 1 Ĺ C 1.

Suppose that C Ď H Y H 1. Then the strong circuit exchange ax-
iom (see [Oxl11, §1.1, Ex. 14]) yields a circuit C2 P CM for which
C2 Ď H Y C 1, H 1 Ę C2 and C2 Ę H Y H 1. Since C2 Ĺ C 1 con-
tradicts incomparability of circuits, H Ĺ C2 since H is a handle and
Lemma 2.3.(b) forbids equality.

Replacing C by C2 if necessary, then, we may assume that C Ę

H Y H 1. By hypothesis, MzpH Y H 1q is connected, and C witnesses
the fact that H, C X H 1 and EzpH Y H 1q are all in the same con-
nected component. Then the set H2 :“ H 1zC is in HMzH , and MzH2

is connected.
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If H2 R HM there is a circuit C2 P CM such that H ‰ C2XH2 ‰ H2.
In particular H Ď C2, since otherwise C2 is disjoint from H, and
C2 P CM X 2EzH “ CMzH , which would contradict H 1 P HMzH . This
means that C2 connects H with C2XH2. We may therefore replace H2

by H2zC2 Ĺ H2 and iterate. After finitely many steps, then, H2 P HM.
(b) Set C :“ H YH 1 and let d P EzC and e P H. By connectedness

of M, there is a C 1 P CM such that d, e P C 1. Then e P C 1 X H and
hence H Ď C 1 since H is a handle. Assume that C 1 XH 1 ‰ H. Then
also H 1 Ď C 1 since H 1 is a handle. Thus d R C “ H Y H 1 Ĺ C 1 Q
d contradicting incomparability of circuits. Therefore C 1 X H 1 “ H

and hence d, e P C 1 P CM X 2EzH
1

“ CMzH 1 . It follows that MzH 1 is
connected. �

Lemma 2.7. Let M be a connected matroid with a handle decompo-
sition of length 2. Then M has at least 3 (disjoint) non-disconnective
handles. In case of equality they form the handle partition.

Proof. With notation from (the proof of) Proposition 2.5 consider the
circuits C 1 :“ C1 P CM, C :“ C2 P CM, the handle H :“ H2 P HM and
the subsets H ‰ H 1 :“ C 1zC Ď E and H ‰ H2 :“ C X C 1 Ď E. Then
E “ H \H 1 \H2 and C 1 “ H 1 YH2 and C “ H YH2.

Let C2 P CM be a circuit with C 1 ‰ C2 ‰ C. By Lemma 2.3.(d), we
may assume that |H| “ 1. Then H 1 Ď C2 (see [Oxl11, §1.1, Ex. 5]) and
hence H 1 P HM. In case H2 P HM is a handle, the proof is complete.

By incomparability of circuits, C2 Ę C 1 and hence H Ď C2 since H
is a handle. Thus, H Y H 1 Ď C2 for any circuit C2 P CM be a circuit
with C 1 ‰ C2 ‰ C.

Suppose that H 1 R HM and pick C2 such that H ‰ C2 X H2 ‰

H2. Then C2 connects C2 X H2 with H 1 and H. Again the proof
is complete if H2zC2 P HM is a handle. Otherwise iterating yields a
handle H2zC2 Ě H3 P HM. By the strong circuit exchange axiom (see
[Oxl11, §1.1, Ex. 14]), there is a different C2 such that H3 Ď C2. Then
repeating the preceding argument yields a fourth non-disconnective
handle H2zH3 Ě H4 P HM. �

Proposition 2.8. (Number of non-disconnective handles) Let M be a
connected matroid with a handle decomposition of length k ě 2 as in
Proposition 2.5. Then M has at least k`1 (disjoint) non-disconnective
handles.

Proof. We argue by induction, the base case k “ 2 being covered by
Lemma 2.7. Let k ą 2 and assume the claim holds for matroids with
handle decompositions of length up to k ´ 1. Suppose M is connected
and has a handle decomposition of length k with non-disconnective
handle Hk “ E´Fk´1 P HM. By induction, MzH “ M|Fk´1

has at least
k non-disconnective handles H 1

0, . . . , H
1
k´1 P HMzH . By Lemma 2.3.(a)

and (c), H 1
i ‰ EzH and hence H 1

i P MaxHMzH for i “ 1, . . . , k ´ 1.
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In particular the H 1
0, . . . , H

1
k´1 are disjoint and also Hk Y H 1

i ‰ E for
i “ 1, . . . , k ´ 1. Lemma 2.6.(a) now yields for each i “ 1, . . . , k ´ 1
a non-disconnective handle H 1

i Ě H2
i P HM. Finally M has k ` 1 non-

disconnective handles H2
0 , . . . , H

2
k´1, Hk. �

We conclude this section with an observation.

Lemma 2.9. Let M be a connected matroid of rank rkM ě 2. Then
there is a circuit C P CM of size |C| ě 3.

Proof. Suppose instead all circuits have at most 2 elements. Since a
circuit of size k has rank k ´ 1, the union of all circuits containing
any element e would equal the closure of e ([Oxl11, Prop. 1.4.11.(ii)]).
So the closure of e would be a connected component of M ([Oxl11,
Prop. 4.1.2]), hence all of E, by our assumption that M is connected.
But then M has rank 1, a contradiction. �

2.3. Configurations and realizations. Our objects of interest are
not associated to a matroid itself but a realization as defined in the
following. All matroid operations come with a counter-part for realiza-
tions.

Fix a field K and denote the K-dual by ´_ :“ HomKp´,Kq. For a
set E consider KE as a based K-vector space with basis E. Denote by
E_ “ pe_qePE the dual basis.

We define configurations following Bloch, Esnault and Kreimer (see
[BEK06, §1]).

Definition 2.10 (Configurations). Let E be a set. A K-vector sub-
space W Ď KE is called a configuration (over K). It is called totally
unimodular if it admits a basis with all determinants of the coefficient
matrix 0 or ˘1. It defines a matroid MW on E with independent sets

IMW
“ tS Ď E | pe_|W qePS is K-linearly independent in W_

u.

Remark 2.11 (Hyperplane arrangements). A configuration in the sense
of Definition 2.10 is in fact a configuration of vectors e_|W P W_, for
e P E. Suppose that e_ ‰ 0 for each e P E or, equivalently, that MW

has no loops. Then the images of the e_|W in PW_ form a projective
point configuration in the classical sense (see [HC52]). Dually, the
hyperplanes kerpe_q X W form a hyperplane arrangement in W (see
[OT92]), which is an equivalent notion in this case. ˛

Definition 2.12 (Realizations). Let M be a matroid and W Ď KE

a configuration (over K). If M “ MW , then W is called a (linear)
realization of M and M is called (linearly) realizable (over K). If M
admits a realization over K “ F2, then it is called a binary matroid.
If M admits a totally unimodular realization, then it is called a regular
matroid.
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Remark 2.13 (Matroids and linear algebra). Given a realization W Ď

KE of M, the notions in §2.1 are derived from linear (in)dependence
overK. For example, for any subset S Ď E and defining matrix A ofW ,
the rank rkMpSq equals the rank of the submatrix of A with columns S.
In particular, taking S “ E, we note that rkM “ dimW . An element
e P E is a loop if and only if column e of A is zero; e is a coloop if and
only if column e is not in the span of the other columns. ˛

We fix some notation for realizations of basic matroid operations.
Any subset S Ď E gives rise to an inclusion and a projection

ιS : KS ãÑ KE, πS : KE � KE
{KEzS

“ KS

of based K-vector spaces.

Definition 2.14 (Realizations of matroid operations). Let W Ď KE

be a realization of a matroid M.

(a) The dual matroid MK is realized by the configuration

WK :“ pKE
{W q_ Ď pKE

q
_
“ KE_ .

(b) For 0 ‰ ϕ P W_ consider the hyperplane configuration

Wϕ :“ kerϕ Ď KE.

(c) The configuration

W |F :“ πF pW q Ď K
F

– pW `KEzF
q{KEzF

– W {pW XKEzF
q

realizes the restriction matroid M|F .
(d) The configuration

W zF :“ W |EzF

realizes the deletion matroid MzF . We abbreviate W ze :“ W zteu.
(e) The configuration

W {F :“ W XKEzF
Ď KEzF

realizes the contraction matroid M{F .

Remark 2.15. Let W Ď KE be a realization of a matroid M.

(a) The element e P E is a loop or coloop of M if and only if W Ď KEzteu

or W “ pW zeq ‘ Kteu respectively. In these cases W ze “ W {e Ď
KEzteu.

(b) If πBpkerϕXW q ‰ KB for each B P BM, then MWϕ “ T pMq. ˛

Example 2.16 (Realizations of uniform matroids). If W is the row span
of a r ˆ n matrix which is generic in the sense that all its maximal
minors are non-zero, then W is a realization of the uniform matroid
Ur,n (see Example 2.1). ˛



CONFIGURATION HYPERSURFACES 15

2.4. Graphic matroids. Matroids arising from graphs are the most
prominent examples for our results.

A graph G “ pV,Eq is a pair of finite sets V and E of vertices and
edges where each edge e P E is a set of one or two vertices in V .
This allows for multiple edges between pairs of vertices, and loops at
vertices. For simplicity we consider only connected graphs.

A graph determines a graphic matroid MpGq on E by declaring a
subset S Ď E to be an independent set if the edge-induced subgraph S
is acyclic. The bases of MpGq are the spanning trees of G (see [Oxl11,
p. 18]),

(2.7) BMG
“ T pGq.

Recall that a vertex in a connected graph is a cut vertex if its removal
disconnects the graph. We remark that the matroid MpGq of a con-
nected graph G with at least three vertices is connected if and only if
G has no cut vertex (see [Oxl11, Cor. 8.1.6]). We refer also to [Oxl11,
Ch. 8] for a complete discussion of notions of graph connectivity versus
matroid connectivity.

Graphic matroids have linear realizations coming from their edge-
vertex incidence matrices, as follows (see [BEK06, §2]). A choice of
orientation turns G into a CW-complex. This gives rise to an exact
sequence
(2.8)

0 // H1pG,Kq // KE δ
// KV σ

// H0pG,Kq // 0

psÑ tq � // t´ s

with dual

0 H1pG,Kqoo KEoo KVδ_
oo H0pG,Kqoo 0oo

Definition 2.17 (Graph configuration). We call WG :“ Im δ_ the
graph configuration of the graph G over K.

The subspace WG Ď K
E is a totally unimodular realization of MpGq

(see [Oxl11, Lem. 5.1.3]) and independent of the chosen orientation
on G. By construction, WK

G “ H1pG,Kq realizes its dual MpGqK (see
Definition 2.14.(a)).

Besides circuits (see Example 2.1) the following matroid is a base
case of our inductive approach.

Definition 2.18 (Prism matroid). We call the matroid associated with
the p2, 2, 2q-theta graph (see Figure 1) the prism matroid, since it can
also be realized as the six vertices of a triangle-based prism in P3.

Lemma 2.19 (Characterization of the prism matroid). Let M be a
connected matroid on E “ te1, . . . , e6u with |E| “ 6 whose handle
partition E “ H1 \ H2 \ H3 is made of 3 maximal 2-handles H1 “

te1, e2u, H2 “ te3, e4u and H3 “ te5, e6u (see Lemma 2.7). Then M is
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Figure 1. Graph defining the prism matroid.

e1

e2

e6

e5

e3

e4

the prism matroid. Up to scaling E, it has a unique realization W with
basis

w1 :“ e1 ` e2, w2 :“ e3 ` e4, w3 :“ e5 ` e6, w4 :“ e1 ` e3 ` e5.

Proof. Each circuit is a union of handles. By Lemma 2.3.(b), no Hi is
a circuit but each Hi is properly contained in one. After renumbering
this yields circuits C1 “ H2 \ H3 and C2 “ H1 \ H3. The strong
circuit exchange axiom (see [Oxl11, §1.1, Ex. 14]) yields a third circuit
C3 “ H1\H2. However, if E is a circuit, then it is unique and E is the
unique maximal handle. Therefore CM “ tC1, C2, C3u coincides with
the circuits of the prism matroid. The first claim follows.

Let W be any realization of M. By the above, dimW “ rkM “ 4.
Pick a basis wi “

ř6
j“1w

i
jej, i “ 1, . . . , 4. We may assume that columns

2, 4, 6, 5 of the coefficient matrix pwijqi,j form an identity matrix. Since

C1 and C2 are circuits, w1
3 “ 0 ‰ w2

3 and w2
1 “ 0 ‰ w1

1. Thus,

pwijqi,j “

¨

˚

˚

˝

˚ 1 0 0 0 0
0 0 ˚ 1 0 0
˚ 0 ˚ 0 0 1
˚ 0 ˚ 0 1 0

˛

‹

‹

‚

.

Since C3 is a circuit, suitably replacing w3, w4 P xw3, w4y, reordering
H3 and scaling e1, e3 makes

pwijqi,j “

¨

˚

˚

˝

˚ 1 0 0 0 0
0 0 ˚ 1 0 0
0 0 0 0 ˚ 1
1 0 1 0 1 0

˛

‹

‹

‚

,

where w1
1, w

2
3, w

3
5 ‰ 0. Now suitably scaling first w1, w2, w3 and then

e2, e4, e6 makes

pwijqi,j “

¨

˚

˚

˝

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 1 0 1 0

˛

‹

‹

‚

.

The second claim follows. �

The following classes of matroids play a distinguished role in con-
nection with 3-connectedness.
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Example 2.20 (Wheels and whirls). We recall from [Oxl11, §8.4] the
wheel and whirl matroids. For n ě 2 the wheel graph Gn is obtained
from an n-cycle, the “rim”, by adding an additional vertex and edges,
the “spokes”, joining it to each vertex in the rim (see Figure 2). We
write S for the set of spokes and R for the set of edges in the rim.

sn

rn

s1

r1s2

r2

s3

r3

s4

r4

s5r5

s6

r6

s7

r7
s8

r8

s9

r9

Figure 2. The wheel graph Gn.

For n ě 3 the wheel matroid is the graphic matroid Wn :“ MpGnq on
E :“ S \R. For n ě 2 the whirl matroid is the (non-graphic) matroid
on E obtained from MpGnq by relaxation of the rim, that is,

BWn “ BMpGnq \ tRu.

In terms of circuits this means that

CWn “ BMpGnqzR \ ttsu \R | s P Su.

We use a cyclic index set t1, . . . , nu “ Zn and write S “ ts1, . . . , snu
and R “ tr1, . . . , rnu. Then tsi, ri, si`1u and tri, ri`1, si`1u are triangles
and triads respectively. In fact, this property enforces M P tWn,W

nu

for any connected matroid M on E \ F (see [Sey80, (6.1)]).
In Lemma 4.39 we describe all realizations of wheels and whirls. In

particular it shows the well-known fact that whirls are not binary. ˛

3. Configuration polynomials and forms

In this section we define configuration polynomials and configuration
forms. We lay the foundation for an inductive proof of our main result
using a handle decomposition. In the process we generalize some known
results on graph polynomials to configuration polynomials.



18 G. DENHAM, M. SCHULZE, AND U. WALTHER

3.1. Configuration polynomials. To prepare the definition of con-
figuration polynomials we introduce some notation.

Let W Ď KE be a configuration. Compose the associated inclusion
map with πS to a map

(3.1) αW,S : W �
�

// KE πS
// KS

invariant under enlarging E. Fix an isomorphism

(3.2) cW : K
–
//
ŹdimW W

and set c0 :“ idK. Note that a choice of basis of W gives rise to such
an isomorphism. Fix an ordering on E to identify

(3.3)

|S|
ľ

KS
“ K.

Note that different orderings result in a sign change only. If S has size
|S| “ dimW , consider the determinant

detαW,S : K
cW

–
//
Ź|S|W

Ź|S| αW,S
//
Ź|S|

KS “ K

defined up to sign and set

cW,S :“ det2αW,S P K.

Note that α0,H “ idK and hence c0,H “ 1.

Remark 3.1. Let W Ď KE be a configuration, and let S Ď F Ď E with
|S| “ dimW . Then the maps (3.1) for W and W |F form a commutative
diagram

W

αW,S

##

πF –

��

� � // KE

πF
��

πS
// KS

W |F

αW |F ,S

<<

� � // KE πS
// KS

and hence cW,S “ c2 ¨ cW |F ,S for some c P K˚ independent of S. ˛

Consider the dual basis E_ “ te_ | e P Eu of E as coordinates

(3.4) xe :“ e_, e P E,

on KE, and abbreviate Be :“ B

Bxe
. Given an enumeration of E “

te1, . . . , enu we write xi :“ xei and Bi :“ Bei . For a subset S Ď E,
set xS :“ pxeqePS and xS :“

ś

ePS xe and abbreviate x :“ xE.
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Definition 3.2 (Configuration polynomials). The configuration poly-
nomial of the configuration W Ď KE is the polynomial

ψW :“
ÿ

BPBM

cW,B ¨ x
B
P Krxs.

Remark 3.3 (Well-definedness of configuration polynomials). Any two
isomorphisms (3.2) differ by a nonzero multiple c P K˚. Using the
isomorphism c ¨ cW in place of cW replaces ψW by c2 ¨ ψW . In other
words, ψW is well-defined up to a squared non-zero factor. Whenever
ψW occurs in a formula, we mean that the formula holds true for a
suitable choice of such a factor. ˛

Remark 3.4 (Configuration polynomials and basis scaling). Dividing
e P E by c P K˚ multiplies xe “ e_ by c (see Remark 2.11) and the
identifications (3.3) with e P S by c. This results in multiplying, for
each e P B P BM, cW,B by c2 and xB by c. The same result is achieved
by substituting c3 ¨ xe for xe in ψW . Scaling E thus results in scaling x
in ψW .

On the other hand, dropping the equality (3.4) and scaling e P E
for fixed xe replaces W in ψW by an equivalent realization (see [Oxl11,
§6.3]). ˛

Remark 3.5 (Degree of configuration polynomials). By definition, rkM “

0 if and only if ψW “ 1 for some/any realization W Ď KE of M and
otherwise

degψW “ rkM “ dimW

for any realization W Ď KE of M. A variable xe does not appear in
(divides) ψW exactly if e P E is a (co)loop in M. ˛

Remark 3.6 (Matroid polynomial). For any matroid M, not necessarily
realizable, one might consider the matroid (basis) polynomial

ψM :“
ÿ

BPBM

xB.

If M is regular, then ψW “ ψM for any totally unimodular realization
W of M. In this case, for any field K, all realizations of M are equiva-
lent (see [Oxl11, Prop. 6.6.5]), and thus define geometrically equivalent
configuration polynomials (see Remark 3.4). In general, ψW and ψM

are geometrically different (see Example 5.2). ˛

Example 3.7 (Configuration polynomials of free matroids and circuits).
Let W Ď KE be a realization of a matroid M, and set n :“ |E|.

(a) Suppose that M is free. Then then E P BM and

ψW “ xE

is the elementary symmetric polynomial of degree n in n variables.



20 G. DENHAM, M. SCHULZE, AND U. WALTHER

(b) Suppose that M is a circuit. Then E P CM and by Remark 3.1

ψW “
ÿ

ePE

ψW ze.

With E “ te1, . . . , enu, W has a basis wi “ ei ` ci ¨ en with ci P K
˚

where i “ 1, . . . , n´ 1. Scaling first w1, . . . , wn´1 and then e1, . . . , en´1

makes c1 “ ¨ ¨ ¨ “ cn´1 “ 1. This makes ψW the elementary symmetric
polynomial of degree n´ 1 in n variables. ˛

Example 3.8 (Configuration polynomial of the prism). For the unique
realization W of the prism matroid (see Lemma 2.19),

ψW “ x1x2px3`x4qpx5`x6q`x3x4px1`x2qpx5`x6q`x5x6px1`x2qpx3`x4q.
˛

In the following we put matroid connectivity in correspondence with
irreducibility of configuration polynomials. As a preparation we lift a
direct sum of matroids to any realization.

Lemma 3.9. Any decomposition M “ M1 ‘M2 of matroids with un-
derlying partition E “ E1\E2 induces a decomposition of realizations
W “ W1 ‘W2 where Wi Ď K

Ei.

Proof. The splitting of πi : K
E Ñ KEi allows one to consider Wi :“

πipW q Ď KEi . Decompose a basis B “ B1 \ B2 P BM into Bi P

BMi
where i “ 1, 2. Then πi ˝ αW,B factors through isomorphisms

αWi,Bi
: Wi Ñ KBi where i “ 1, 2. Composing with KBi ãÑ KEi shows

that Wi Ď W and hence Wi “ W X KEi for i “ 1, 2. It follows that
KE “ KE1 ‘KE2 induces W “ W1 ‘W2. �

Proposition 3.10 (Connectedness and irreducibility). Let M be a ma-
troid of rank rkM ą 0 with realization W Ď KE. Then M is connected
if and only if M has no loops and ψW is irreducible. In particular, if
M “

Àn
i“1 Mi is a decomposition into connected components Mi, then

ψW “
śn

i“1 ψWi
where ψWi

is irreducible if rkMi ą 0, and ψWi
“ 1

otherwise

Proof. First suppose that M “ M1‘M2 is disconnected with underlying
proper partition E “ E1\E2. By Lemma 3.9, any realization W Ď KE

of M decomposes as W “ W1 ‘W2 where Wi Ď KEi . Then αW,B “
αW1,B1 ‘ αW2,B2 for all B “ B1 \B2 P BM and hence ψW “ ψW1 ¨ ψW2 .
This factorization is proper if M and hence each Mi has no loops (see
Remark 3.5). Thus ψW is reducible in this case.

Suppose now that ψW is reducible for some realization W Ď KE of
M. Then ψW “ ψ1 ¨ ψ2 with ψi homogeneous of positive degree, for
i “ 1, 2. Since ψW is a linear combination of square-free monomials
(see Definition 3.2), this yields a proper partition E “ E1 \ E2 such
that ψi P KrxEi

s, for i “ 1, 2. In particular, there is no cancellation
of terms in the product ψW “ ψ1 ¨ ψ2. Consider the corresponding
restrictions Mi “ M|Ei

, for i “ 1, 2.
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Each basis B P BM indexes a monomial xB of ψW . Set Bi :“ BXEi,
for i “ 1, 2. Then xB “ xB1 ¨ xB2 where xBi is a monomial of ψi, for
i “ 1, 2. By homogeneity of ψi, Bi is a basis of Mi, for i “ 1, 2, and
hence B “ B1 \B2 P BM1‘M2 . It follows that BM Ď BM1‘M2 .

Conversely, let B “ B1 \B2 P BM1‘M2 . By definition, Bi P BMi
is of

the form Bi “ B X Ei for some B P BM, for i “ 1, 2. As above, xBi is
then a monomials in ψi, for i “ 1, 2. Since there is no cancellation of
terms in the product ψW “ ψ1 ¨ ψ2, xB is then a monomial of ψW , and
hence B P BM. It follows that BM Ě BM1‘M2 as well.

So M “ M1 ‘M2 is a proper decomposition, and M is disconnected.
�

We use the following well-known fact from linear algebra.

Remark 3.11 (Determinant formula). Consider a short exact sequence
of finite dimensional K-vector spaces

0 // W // V // U // 0.

Abbreviate
Ź

V :“
ŹdimV V . There is a unique isomorphism

(3.5)
ľ

W b
ľ

U “
ľ

V

that fits into a commutative diagram of canonical maps

Ź

W b
ŹdimU V

��

//
ŹdimW V b

ŹdimU V

��
Ź

W b
Ź

U
Ź

V.

Tensored with

p
ľ

Uq_ “
ľ

pU_q, p
ľ

W q_ “
ľ

pW_
q

respectively it induces identifications

(3.6)
ľ

W “
ľ

V b
ľ

U_,
ľ

U “
ľ

W_
b
ľ

V.

Consider a commutative diagram with short exact rows

0 // W

α –

��

// V // U // 0

0 U 1oo Voo W 1

β–

OO

oo 0.oo

Applying (3.5) to the rows yields a composed isomorphism

Ź

α b
Ź

β´1 :
Ź

W b
Ź

U //
Ź

U 1 b
Ź

W 1.
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and with (3.6) a commutative diagram
Ź

W
Ź

α –

��

Ź

W b
Ź

U b
Ź

U_

Ź

αb
Ź

β´1b
Ź

β_ –

��

Ź

V b
Ź

U_

idb
Ź

β_–

��
Ź

U 1
Ź

U 1 b
Ź

W 1 b
Ź

W 1_
Ź

V b
Ź

W 1_.

˛

The following result describes the behavior of configuration polyno-
mials under duality. The proof by Bloch, Esnault and Kreimer for
graph polynomials applies verbatim (see [BEK06, Prop. 1.6]).

We consider E_ as the dual basis of E and identify

pKE
q
_
“ KE_ .

The bijection (2.5) extends to a K-linear isomorphism

ν : KE
Ñ KE_ .

Proposition 3.12 (Dual configuration polynomial). Let W Ď KE be
a realization of a matroid M. Then, for a suitable choice of cW ,

detαWK,SK “ ˘ detαW,S

for all S Ď E of size |S| “ rkM. In particular,

ψWK “ xE ¨ ψW ppx
´1
e_ qePEq.

Proof. Let S Ď E be of size |S| “ rkM. Then S P BM if and only
if SK P BMK . We may assume that this is the case as otherwise both
determinants are zero. Then there a commutative diagram with exact
rows

0 // W //

αW,S –

��

KE //

ν–

��

KE{W // 0

0 KSoo KE_πS˝ν
´1

oo KSK
π_
SK

oo

α_
WK,SK–

OO

0.oo

This yields a commutative diagram (Remark 3.11)

K

cW

��

–
//
Ź|E|

KE bK K

idbc
WK

��
ŹrkMW

ŹrkM αW,S

��

Ź|E|
KE b

ŹrkMKWK

Ź|E| νb
ŹrkMK α

WK,SK

��
ŹrkM

KS
Ź|E|

KE_ b
ŹrkMK

KSK .

Up to a sign, the composition

K “
Ź|E|

KE

Ź|E| ν
//
Ź|E|

KE_ “ K
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is the identity. A suitable choice of cW yields the claim (see Re-
mark 3.3). �

The coefficients of the configuration polynomial satisfy the following
restriction-contraction formula.

Lemma 3.13 (Restriction-contraction for coefficients). Let W Ď KE

be a realization of a matroid M. For B P BM and F Ď E, BXF P BM|F

if and only if BzF P BM{F . In this case,

cW,B “ c2
F ¨ cW {F,BzF ¨ cW |F ,BXF

where cF “ c´1
W {F ¨ c

´1
W |F ¨ cW P K˚ is independent of B.

Proof. The equivalence follows from the commutative diagram with
exact rows

0 // W {F //
� _

��

W //
� _

��

W |F //
� _

��

0

0 // KEzF //

��

KE //

��

KF //

��

0

0 // KBzF // KB // KBXF // 0.

Taking exterior powers yields (see Remark 3.11)
(3.7)

K

cW –

��

–

cF
// K “ KbK

cW {FbcW |F–

��
ŹrkMW

ŹrkM αW,B

��

ŹrkM{F W {F b
ŹrkM|F W |F

ŹrkM{F αW {F,BzFb
ŹrkM|F αW |F ,BXF

��
ŹrkM

KB
ŹrkM{F

KBzF b
ŹrkM|F KBXF

where cF “ c´1
W {F ¨ c

´1
W |F ¨ cW P K˚ is independent of B. �

The following result describes the behavior of configuration polyno-
mials under deletion-contraction. The statement on BeψW was proven
by Patterson (see [Pat10, Lem. 4.4]).

Proposition 3.14 (Deletion-contraction for configuration polynomi-
als). Let W Ď KE be a realization of a matroid M. Then

ψW “

$

’

&

’

%

ψW ze “ ψW {e if e is a loop,

ψW |e ¨ ψW {e “ ψW |e ¨ ψW ze if e is a coloop,

ψW ze ` ψW |e ¨ ψW {e otherwise,
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where ψW |e “ cW |e,teu ¨ xe with cW |e,teu P K
˚ if e is not a loop. In

particular,

BeψW “

$

’

&

’

%

0 if e is a loop,

ψW {e “ ψW ze if e is a coloop,

ψW {e otherwise,

ψW |xe“0 “

$

’

&

’

%

ψW ze “ ψW {e if e is a loop,

0 if e is a coloop,

ψW ze otherwise.

Proof. Decompose

(3.8) ψW “
ÿ

eRBPBM

cW,B ¨ x
B
` xe ¨

ÿ

ePBPBM

cW,B ¨ x
Bzteu.

The second sum in (3.8) is non-zero if and only if e is not a loop. By
Lemma 3.13 applied to F “ teu, it equals (see (2.3))

c2
¨ cW |e,teu ¨

ÿ

BPBM{e

cW {e,Bzteu ¨ x
B
“ c2

¨ cW |e,teu ¨ ψW {e

where c :“ cteu P K
˚.

The first sum in (3.8) is non-zero if and only if e is not a coloop.
In this case, F :“ Ezteu satisfies W {F “ W X Kteu “ 0 and W |F “
W {pW XKteuq “ W . It follows that cW {F,H “ 1 and (see (3.7))

rkM|F
ľ

W |F “

rkM{e
ľ

W {eb

rkM|e
ľ

W |e

yields cF “ cteu “ c. By Lemma 3.13, the first sum in (3.8) then equals
(see (2.1))

c2
¨

ÿ

BPBMze

cW ze,B ¨ x
B
“ c2

¨ ψW ze.

If e is a (co)loop, then W {e “ W ze (see Remark 2.15.(a)). This yields
the claimed formulas up to the factor c2, but c “ 1 for a suitable choice
of cW (see Remark 3.3). �

The following formula relates configuration polynomials with dele-
tion and contraction of handles. It is the basis for our inductive ap-
proach to Jacobian schemes.

Corollary 3.15 (Configuration polynomials and handles). Let W Ď

KE be a realization of a connected matroid M on E, and let E ‰ H P

HM be a proper handle. Then H P CM{pEzHq and

ψW “ ψW {pEzHq ¨ ψW zH ` ψW |H ¨ ψW {H ,(3.9)

ψW {pEzHq “
ÿ

hPH

ψW |Hzthu ,(3.10)

ψW |H “ xH , ψW |Hzthu “ xHzthu.(3.11)
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In particular, after suitably scaling H,

(3.12) ψW “
ÿ

hPH

xHzthu ¨ ψW zH ` x
H
¨ ψW {H .

Proof. By Lemma 2.3.(b), there is a H Ĺ C P CM. Since H P HM,
H Ď C for any C 1 P CM with C 1 Ę EzH. This yields the first claim (see
(2.4)) and hence (3.10) by Example 3.7.(b). By Lemma 2.3.(b) (see
(2.1)), M|H is free, and equalities (3.11) follows from Example 3.7.(a).
Equality (3.12) follows from (3.9), (3.10) and Example 3.7.(b). It re-
mains to prove equality (3.9).

We proceed by induction on |H|. Proposition 3.14 covers the case
|H| “ 1. Suppose now |H| ě 2. Let h P H and set H 1 :“ Hzthu. Since
M is connected,

(3.13) ψW “ ψW zh ` ψW |h ¨ ψW {h

by Proposition 3.14. By Lemma 2.3.(c) and (b), the set H 1 consists of
coloops in Mzh and M|H 1 is free. Iterating Proposition 3.14 thus yields

(3.14) ψW zh “
ź

h1PH 1

ψW |h1 ¨ ψW zH “ ψW |H1 ¨ ψW zH .

By Lemma 2.3.(d), the set H 1 is a proper handle in the connected
matroid M{h. By Lemma 2.3.(c), h is a coloop in MzH 1 and hence

W {hzH 1
“ W zH 1

{h “ W zH 1
zh “ W zH.

by Remark 2.15.(a). By the induction hypothesis,

(3.15) ψW {h “
ÿ

h1PH 1

ψW |H1zth1u ¨ ψW zH ` ψW |H1 ¨ ψW {H .

By Lemma 2.3.(b), M|H and M|Hzth1u are free. Iterating Proposition 3.14
thus yields

(3.16) ψW |h ¨ ψW |H1 “ ψW |H , ψW |h ¨ ψW |H1zth1u “ ψW |Hzth1u ,

by Proposition 3.14. Using equalities (3.10) and (3.16), equality (3.9)
is obtained by substituting (3.14) and (3.15) into (3.13). �

The following result describes the behavior of configuration polyno-
mials when passing to a hyperplane. It is not needed to prove our main
result.

Proposition 3.16 (Configuration polynomial of hyperplanes). Let W Ď

KE be a realization of a matroid M, and let 0 ‰ ϕ P W_. Then

ψWϕ “
ÿ

BĎE
|B|“rkM´1

˜

ÿ

eRB

˘ϕ̃e ¨ detαW,BYteu

¸2

xB,

where ϕ̃ “ pϕ̃eqePE P pK
Eq_ is any lift of ϕ.
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Proof. Set V :“ WK and Vϕ :“ WK
ϕ and consider the commutative

diagram with short exact rows and columns

0

��

0

��

K

��

0 // Wϕ

��

// KE // V _ϕ //

��

0

0 // W //

ϕ

��

KE

ϕ̃
||

// V _ //

��

0

K

��

0

0.

Dualizing and identifying the two copies of K by the Snake Lemma
yields a commutative diagram with short exact rows and columns

(3.17) 0

0 K

OO

¨ϕ̃

}}

0 W_
ϕ

oo

OO

KE_oo Vϕoo

OO

0oo

0 W_oo

OO

KE_oo Voo

OO

0oo

K

¨ϕ

OO

¨ϕ̃

;;

0

OO

0.

OO

By Remark 3.11 and with a suitable choice of cV (see Remark 3.3), the
right vertical short exact sequence in (3.17) gives rise to a commutative
square

K
cVϕ
//
ŹrkMK`1 Vϕ

K
cV

//
ŹrkMK V
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Let B1 Ď E_ with |B1| “ dimVϕ “ rkMK`1 and denote ϕ̃B1 “ pϕ̃eqePB1 .
Due to (3.17) the maps αVϕ,B1 and

`

ϕ̃B1 αV,B1
˘

: K‘ V Ñ KE_
Ñ KB1

agree after applying
ŹrkMK`1. Laplace expansion thus yields

detαVϕ,B1 “
ÿ

ePB1

˘ϕ̃e ¨ detαV,B1zteu.

Let B Ď E with |B| “ dimWϕ “ rkM ´ 1 and B1 “ BK. Then
Proposition 3.12 yields

cWϕ,B “

˜

ÿ

eRB

˘ϕ̃e ¨ detαW,BYteu

¸2

. �

3.2. Graph polynomials. We continue the discussion of graphic ma-
troids from §2.4 discussing their configuration polynomials.

Let G “ pE, V q be a graph.

Definition 3.17 (Graph polynomial). The (first) graph polynomial or
Kirchhoff polynomial of a graph G is the polynomial

ψG :“
ÿ

TPT pGq

xT .

By (2.7), we have ψG “ ψW for any totally unimodular realization
W of MpGq. In particular, this yields the following result of Bloch,
Esnault and Kreimer (see [BEK06, Prop. 2.2] and Proposition 3.12).

Proposition 3.18 (Bloch, Esnault, Kreimer). For any graph G, we
have (see Definition 2.17)

ψG “ ψWG
. �

Denote by T2pGq the set of acyclic subgraphs T of G with |V | ´ 2
edges. Any such T has 2 connected components T1 and T2 and we write
T “ tT1, T2u. For any subgraph S of G and p P KV we abbreviate

mSppq :“
ÿ

vPS

pv.

If p P kerσ (see (2.8)) and T P T2pGq, then

mT1ppq “
ÿ

vPT1

pv “ ´
ÿ

vPT2

pv “ ´mT2ppq

and hence m2
T1
ppq P K is well-defined.

Definition 3.19 (Second graph polynomial). The second graph poly-
nomial of a graph G over K is the polynomial

ψGppq :“
ÿ

tT1,T2uPT2pGq

m2
T1
ppq ¨ xT1\T2

depending on a momentum 0 ‰ p P kerσ for G over K.
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The following is a reformulation of a result of Patterson realizing the
second graph polynomial as a configuration polynomial of hyperplanes
(see [Pat10, Prop. 3.3]). Patterson’s proof makes the general formula
in Proposition 3.16 explicit in case of graph configurations (see [Pat10,
Lem. 3.4]).

Proposition 3.20 (Patterson). For any graph G and momentum p of
G over K, we have (see Definitions 3.19, 2.14.(b) and 2.17)

ψGppq “ ψpWGqp . �

3.3. Configuration form. The configuration form yields an equiv-
alent definition of the configuration polynomial. Its second degener-
acy scheme turn out to be closely related to the Jacobian scheme of
non-smooth points of the hypersurface defined by the corresponding
configuration polynomial.

Definition 3.21 (Configuration form). Let µK denote the multiplica-
tion map of K. Consider the generic diagonal bilinear form on KE,

Q :“
ÿ

ePE

xe ¨ µK ˝ pe
_
ˆ e_q : KE

ˆKE
Ñ Krxs.

Let W Ď KE be a configuration of rank r “ dimKW . Then the
configuration (bilinear) form of W is the restriction of Q to W ,

QW :“ Q|WˆW : W ˆW Ñ Krxs.

Alternatively, it can be considered as the composition of canonical maps

(3.18) QW : W rxs // KErxs
Q
// KE_rxs // W_rxs,

where ´rxs means ´bKrxs. For k “ 0, . . . , r, it defines a map

r´k
ľ

W b

r´k
ľ

W bKrxs Ñ Krxs.

Its image is the kth Fitting ideal Fittk cokerQW (see [Eis95, §20.2])
and defines the k ´ 1st degeneracy scheme of QW . We set

MW :“ Fitt1 cokerQW EKrxs.

Remark 3.22 (Matrix representation of configuration forms). With re-
spect to a basis w “ pw1, . . . , wrq of W , QW becomes a matrix of
Hadamard products

Qw “ px ‹ w
i
‹ wjqi,j “

˜

ÿ

ePE

xe ¨ w
i
e ¨ w

j
e

¸

i,j

P Krˆr, wie :“ e_pwiq.

Let Qpi, jq denote the submaximal minor of a square matrix Q obtained
by deleting row i and column j. Then

MW “ xQW pi, jq | i, j P t1, . . . , ruy.
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Any basis of W can be written as w1 “ Uw for some U P AutKW .
Then

Qw1 “ UQwU
t.

and the Qw1pi, jq become K-linear combinations of the Qwpi, jq. We
often consider QW as a matrix Qw determined up to conjugation. ˛

Remark 3.23 (Configuration forms and basis scaling). Scaling E results
in scaling of x in Q and in MW (see Remark 3.4). ˛

Bloch, Esnault and Kreimer defined ψW in terms of QW (see [BEK06,
Lem. 1.3]).

Lemma 3.24 (Configuration polynomial and form). For any configu-
ration W Ď KE, there is an equality ψW “ detQW . �

The following result describes the behavior of Fitting ideals of con-
figuration forms under duality. We consider the torus

TE :“ pK˚qE Ă KE.

We glue KE and KE_ along their tori by identifying

TE “ TE
_

, x´1
e “ xe_ , e P E.

Proposition 3.25 (Duality of cokernels of configuration forms). Let
W Ď KE be a configuration. Then there is an isomorphism of KrTEs-
modules

cokerpQW qxE – cokerpQWKqxE_ ,

where the lower index denotes localization. In particular,

pMW qxE “ pMWKqxE_ EKrT
E
s.

Proof. Consider the short exact sequence

(3.19) 0 // W // KE // KE{W // 0

and its K-dual

(3.20) 0 W_oo KE_oo WKoo 0.oo

We identify KE “ KE__ and KE{W “ WK_, and we abbreviate

Q_ :“ QKE_ .

Then QxE and Q_
xE_

are mutual inverses by definition. Together with
(3.19) and (3.20) tensored by Krx˘1s and (3.18) for W and WK, they



30 G. DENHAM, M. SCHULZE, AND U. WALTHER

fit into commutative diagram with exact rows and columns,
(3.21)

0

0

��

cokerpQWKqxE_

OO

0 // W rx˘1s

pQW qxE

��

// KErx˘1s

Q
xE

��

// WK_rx˘1s

OO

// 0

0 W_rx˘1s

��

oo KE_rx˘1s

Q_
xE
_

OO

oo WKrx˘1s

pQ
WK qxE

_

OO

oo 0oo

cokerpQW qxE

��

0

OO

0,

where ´rx˘1s means ´bKrx˘1s. Injectivity of pQW qxE , and similarly
of pQWKqxE_ , comes from detpQW qxE “ ψW P Krx˘1s being regular if
W ‰ 0 (see Lemma 3.24 and Remark 3.5). The claim follows from the
diagram (3.21) using the universal property of cokernels. �

The following result describes the behavior of submaximal minors of
configuration forms under deletion-contraction. It is the basis for our
inductive approach to second degeneracy schemes.

Lemma 3.26 (Deletion-contraction for submaximal minors). Let W Ď

KE be a configuration of rank r “ dimKW and e P E. Then any basis
of W {e can be extended to bases of W and W ze such that QW pi, jq “
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

QW zepi, jq “ QW {epi, jq if e is a loop,

ψW ze “ ψW {e if e is a coloop, i “ r “ j,

xe ¨QW zepi, jq “ xe ¨QW {epi, jq if e is a coloop, i ‰ r ‰ j,

0 if e is a coloop, otherwise,

ψW {e if e is not a (co)loop, i “ r “ j,

QW zepi, jq if e is not a (co)loop, i “ r or j “ r,

QW zepi, jq ` xe ¨QW {epi, jq if e is not a (co)loop, i ‰ r ‰ j

for all i, j P t1, . . . , ru. In particular, the QW pi, jq are linear combina-
tions of square-free monomials for any basis of W .

Proof. Pick a basis w1, . . . , wr of W Ď KE and consider

QW “

˜

ÿ

ePE

xe ¨ w
i
e ¨ w

j
e

¸

i,j
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as a matrix. Recall that (see Definition 2.14.(d) and (e)),

W ze “ πEzteupW q, W {e “ W XKEzteu.

and the description of (co)loops in Remark 2.15.(a):
‚ If e is a loop, then wie “ 0 for all i “ 1, . . . , r and hence W ze “

W “ W {e.
‚ If e is not a loop, then we may adjust w1, . . . , wr such that wie “ δi,r

for all i “ 1, . . . , r and then w1, . . . , wr´1 is a general basis of W {e.
‚ If e is a coloop, then we may adjust wr “ e and πEzteu identifies

w1, . . . , wr´1 with a basis of W ze “ W {e.
In the latter case,

(3.22) QW “

ˆ

QW ze 0
0 xe

˙

,

and the claim follows by Lemma 3.24.
It remains to consider the case in which e is not a (co)loop. Then

ιEzteu and πEzteu identify w1, . . . , wr´1 and w1, . . . , wr with bases of W {e
and W ze respectively. Hence,

(3.23) QW ze “

ˆ

QW {e b
bt a

˙

, QW “

ˆ

QW {e b
bt xe ` a

˙

where both the entry a and column b are independent of xe. We con-
sider two cases. If i “ r or j “ r, then clearly QW pi, jq “ QW zepi, jq.
Otherwise,

QW pi, jq “ QW zepi, jq ` xe ¨QW {epi, jq.

This proves the claimed equalities and the particular claim follows (see
Remark 3.22) �

As an application of Lemma 3.24 we describe the behavior of config-
uration polynomials under 2-separations.

Proposition 3.27 (Configuration polynomials and 2-separations). Let
W Ď KE be a realization of a connected matroid M. If E “ E1 \E2 is
an (exact) 2-separation, then

ψW “ ψW {E1 ¨ ψW |E1
` ψW |E2

¨ ψW {E2 .

Proof. Adopt the notation of [Tru92, §8.2]. Extend a basis B2 P BM|E2

to a basis B P BM. Then W is represented as the row space of a matrix
(see [Tru92, (8.1.1)])

(3.24)

ˆ

I 0 A1 0
0 I D A12

˙

where the block columns are indexed by BzB2, B2, E1zB X E1, E2zB2

and rkD “ 1. After ordering and scaling B2 and E1zB X E1 suitably
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we may assume that

D “ p1 bqta1,

a1 “
`

1 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0
˘

‰ 0,

b “
`

1 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0
˘

.

The size of b and a1 is determined by number of rows and columns of
D, respectively. While b could be 0, at least one entry of a1 is a 1.
After suitable row operations and adjusting signs of xB2 , the matrix
(3.24) of W can be repartitioned as follows

(3.25)

¨

˝

I 0 0 A1 0
0 1 0 a1 a2

0 bt I 0 A2

˛

‚.

Let e P E the index of the column p0 1 bqt. Let X1, xe, X2, X
1
1, X

1
2 be

diagonal matrices of variables corresponding to the block columns of
the matrix (3.25) of W . Then the corresponding matrix of QW takes
the form

QW “

¨

˝

X1 ` A1X
1
1A

t
1 A1X

1
1a
t
1 0

a1X
1
1A

t
1 xe ` a1X

1
1a
t
1 ` a2X

1
2a
t
2 xeb` a2X

1
2A

t
2

0 btxe ` A2X
1
2a
t
2 btxeb`X2 ` A2X

1
2A

t
2

˛

‚.

It involves the matrices

QW |E1
“

ˆ

QW {E2 A1X
1
1a
t
1

a1X
1
1A

t
1 a1X

1
1a
t
1

˙

,

QW {E2 “ X1 ` A1X
1
1A

t
1,

QW |E2
“

ˆ

xe ` a2X
1
2a
t
2 xeb` a2X

1
2A

t
2

btxe ` A2X
1
2a
t
2 QW {E1

˙

,

QW {E1 “ btxeb`X2 ` A2X
1
2A

t
2.

Laplace expansion of ψW “ detQW along the eth column yields the
claimed formula. �

Remark 3.28. Let W Ď KE be a realization of a connected matroid
M, and let H P HM be a separating handle. By Lemma 2.3.(e), H \

pEzHq is a 2-separation of M. Proposition 3.27 applied to pE1, E2q :“
pEzH,Hq thus yields the statement of Corollary 3.15 in this case. ˛

Remark 3.29. Note that

d1 :“ degψW |E1
“ degψW {E2 ` 1,

d2 :“ degψW |E2
“ degψW {E1 ` 1.
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For F Ď E, consider the Euler operator χF “
ř

ePF xeBe. Then

χE1ψW “ d1ψW |E1
ψW {E1 ` pd1 ´ 1qψW {E2ψW |E2

,

χE2ψW “ pd2 ´ 1qψW |E1
ψW {E1 ` d2ψW {E2ψW |E2

,

and subtracting respectively d1ψW and d2ψW yields

ψW |E1
ψW {E1 , ψW {E2ψW |E2

P JW .

So any prime over JW contains a factor from each summand of ψW in
the formula of Proposition 3.27. ˛

4. Configuration hypersurfaces

In this section we establish our main results on Jacobian and sec-
ond degeneracy schemes of realizations of connected matroids: The
second degeneracy scheme is Cohen–Macaulay, the Jacobian scheme
equidimensional, of codimension 3 (see Theorem 4.23). The second de-
generacy scheme is reduced, the Jacobian scheme generically reduced
if chK ‰ 2 (see Theorem 4.23).

4.1. Commutative ring basics. In this subsection we review prelim-
inaries on equidimensionality and graded Cohen–Macaulayness. For
the benefit of the non-experts we provide full proofs. Further we re-
late generic reducedness for a ring and an associated graded ring (see
Lemma 4.5).

4.1.1. Equidimensionality of rings. Let R be a Noetherian ring. It is
equidimensional if it is catenary and

@p P Min SpecR : @m P Max SpecR : p Ď m ùñ heightpm{pq “ dimR.

In case R is an affine K-algebra these two conditions reduce to (see
[BH93, Thm. 2.1.12] and [Mat89, Thm. 5.6])

@p P Min SpecR : dimpR{pq “ dimR.

We say that R is pure-dimensional if

@p P AssR : dimpR{pq “ dimR.

The following lemma applies to any equidimensional affineK-algebra.

Lemma 4.1. Let R be a Noetherian ring such that Rm is equidimen-
sional for all m P Max SpecR.

(a) All saturated chains of primes in p P SpecR have length height p.
(b) For any p P SpecR, x P R and q P SpecR minimal over p` xxy,

height q ď height p` 1.

Proof.
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(a) Take two such chains of length n and n1 starting at minimal
primes p0 and p10 respectively. Extend both by a saturated chain of
primes of length m containing p ending in a maximal ideal m. Since
Rm is equidimensional by hypothesis, the extended chains have length
n`m “ n1 `m.

(b) By the Krull principal ideal theorem, heightpq{pq ď 1. Take a
chain of primes in p of length height p and extend it by q if p ‰ q. By
(a), it has length height q and the claim follows. �

Lemma 4.2. Let R be an equidimensional affine K-algebra and x P R.
If Rx ‰ 0, then Rx is equidimensional of dimension dimRx “ dimR.

Proof. Any minimal prime of Rx is of the form px where p P Min SpecR
with x R p. By a version of the Hilbert Nullstellensatz,

Ş

MaxV ppq “ p
(see [Mat89, Thm. 5.5]). This yields an m P Max SpecR such that
p Ď m S x. In particular px Ď mx P Max SpecRx and dimRx{px “
heightpmx{pxq “ heightpm{pq “ dimR. �

4.1.2. Generic reducedness. A Noetherian ring R is generically reduced
if Rp is reduced for all minimal primes p P Min SpecR. Equivalently R
satisfies Serre’s condition R0 that Rp is regular for all p P Min SpecR.
We use the same notions for the associated affine scheme SpecR.

Definition 4.3 (Generic reducedness). We call a Noetherian scheme
X generically reduced (or R0) along a subscheme Y if X is reduced at
all generic points specializing to a point of Y . If X “ SpecR is an
affine scheme, then we use the same notions for the Noetherian ring R.

Lemma 4.4 (Reducedness and reduction). Let pR,mq be a local Noe-
therian ring. If R{tR is reduced for some parameter system t, then R
is regular.

Proof. By hypothesis, R{tR is local Artinian with maximal ideal m{tR.
Reducedness makes R{tR a field and hence m “ tR. Then R is regular
by definition. �

Lemma 4.5 (R0 and normal cone). Let R be a Noetherian d-dimensional
ring and IER an ideal. Consider the (extended) Rees Rrts-algebra (see
[HS06, Def. 5.1.1])

S :“ ReesI R “ Rrt, It´1
s Ď Rrt˘1

s

and the associated graded ring R̄ :“ grI R “ S{tS.

(a) Suppose R is an equidimensional affine K-algebra. Then S is a
d` 1-equidimensional affine K-algebra. If in addition I ‰ R, then
R̄ is a d-equidimensional affine K-algebra.

(b) If S is equidimensional and R̄ is R0, then R is R0 along V pIq.

Proof. There are ring homomorphisms

RÑ Rrts Ñ S Ñ S{tS – R̄.
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Since R is Noetherian, I is finitely generated. Then S is a finite type
R-algebra. In particular both S and R̄ are Noetherian.

(a) Both Rees and gr commute with base change. After base change
toR{p for some p P Min SpecR we may assume thatR is a d-dimensional
domain. Then S is a pd`1q-dimensional domain (see [HS06, Thm. 5.1.4]).
Since R is an affine K-algebra, so is S. In particular it is pd ` 1q-
equidimensional. If I ‰ R, then t is an S-sequence. With the Krull
principal ideal theorem it follows that S{tS – R̄ is d-equidimensional.

(b) Let p P Min SpecR be a minimal prime and consider the exten-
sion prt˘1s P SpecRrt˘1s. Then (see [HS06, p. 96])

t R p̃ :“ prt˘1
s X S P Min SpecS

and hence

(4.1) Sp̃ “ pStqp̃t “ Rrt˘1
sprt˘1s.

Since prt˘1s XR “ p the map RÑ Rrt˘1s localizes to an inclusion

(4.2) Rp ãÑ Rrt˘1
sprt˘1s.

To check injectivity, suppose Rp Q x{1 ÞÑ 0 P Rrt˘1sprt˘1s. Then 0 “
xy P Rrt˘1s for some y “

ř

i yit
i P Rrt˘1szprt˘1s. Then 0 “ xyi P R for

all i and yj P Rzp for some j. It follows that 0 “ x{1 P Rp. Combining
(4.1) and (4.2) reducedness of Rp follows from reducedness of Sp̃.

Suppose now that V ppq X V pIq ‰ H and hence

R ‰ p` I “ p̃0 ` ptSq0 “ pp̃` tSq0

implies p̃`tS ‰ S. Let q P SpecS be a minimal prime over p̃`tS. Then
height q “ 1 by Lemma 4.1.(b) and since t is an S-sequence. Hence
q is minimal over tS and t is a parameter of Sq. Under S{tS – R̄
the minimal prime q{tS P SpecpS{tSq corresponds to a minimal prime
q̄ P Spec R̄. If R̄ is R0, then Sq{tSq “ pS{tSqq{tS – R̄q̄ is reduced. By
Lemma 4.4, Sq and hence its localization pSqqp̃q “ Sp̃ is reduced. �

4.1.3. Graded Cohen–Macaulay rings. Let pR,mq be a Noetherian ˚local
ring, that is, m is the unique maximal graded ideal (see [BH93, Def. 1.5.13]).
For any p P SpecR denote by p˚ the maximal graded ideal contained
in p. Then p˚ P SpecR (see [BH93, Lem. 1.5.6.(a)]) and (see [BH93,
Thm. 1.5.8.(b)])

(4.3) p˚ Ĺ p ùñ dimRp˚ ` 1 “ dimRp

If m P Max SpecR and p˚ Ĺ p, then p˚ Ĺ m and hence dimRp˚ ă

dimRm and dimRp ď dimRm by (4.3). Otherwise, m “ n˚ Ĺ n P
Max SpecR. Then dimRp˚ ď dimRm and hence dimRp ď dimRm `

1 “ dimRn by (4.3). It follows that

(4.4) dimR “

#

dimRm if m P Max SpecR,

dimRm ` 1 if m R Max SpecR.
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For any proper graded ideal I CR also pR{I,m{Iq is ˚local and

(4.5) m P Max SpecR ðñ m{I P Max SpecpR{Iq.

All associated primes p P AssR are graded (see [BH93, Lem. 1.5.6.(b).(ii)])
and hence p Ď m. This yields a bijection (see [Sta18, Lemma 05BZ])

(4.6) AssRÑ AssRm, p ÞÑ pm.

Lemma 4.6. Let pR,mq be a ˚local Cohen–Macaulay ring and I E R
a graded ideal. Then R is pure-dimensional and height I “ codim I.

Proof. The hypothesis is equivalent toRm being (local) Cohen–Macaulay
(see [BH93, Ex. 2.1.27.(c)]). In particular Rm is pure-dimensional (see
[BH93, Prop. 1.2.13]) and height Im “ codim Im (see [BH93, Cor. 2.1.4]).
Using (4.4), (4.5) for I “ p and bijection (4.6),

@p P AssR : dimR “

#

dimRm ` 1 if m P Max SpecR,

dimRm if m R Max SpecR,

“

#

dimpRm{pmq ` 1 if m P Max SpecR,

dimpRm{pmq if m R Max SpecR,

“

#

dimpR{pqm{p ` 1 if m P Max SpecR,

dimpR{pqm{p if m R Max SpecR,

“ dimpR{pq.

Using (4.4) and (4.5),

height I “ height Im “ codim Im

“ dimRm ´ dimpRm{Imq

“ dimRm ´ dimpR{Iqm{I

“ dimR ´ dimpR{Iq “ codim I. �

4.2. Jacobian and degeneracy schemes. In this subsection we as-
sociate Jacobian and second degeneracy schemes to a configuration.
By results of Patterson and Kutz, their supports coincide and their
codimension is at most 3.

If R is a Noetherian ring, then the minimal primes p P Min SpecR
are the generic points of the associated affine scheme SpecR. We refer
to associated primes p P AssR as associated points of SpecR. Due to
Lemma 4.6,

codimKE SpecpKrxs{Iq “ height I

for any graded ideal I EKrxs.

Definition 4.7 (Jacobian and degeneracy schemes). Let W Ď KE be
a configuration. Then the subscheme

XW :“ SpecpKrxs{xψW yq Ď K
E

https://stacks.math.columbia.edu/tag/05BZ
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is called the configuration hypersurface of W . Its Jacobian ideal is

JW :“ xψW y ` xBeψW | e P EyEKrxs.

The subschemes (see Definition 3.21)

ΣW :“ SpecpKrxs{JW q Ď K
E, ∆W :“ SpecpKrxs{MW q Ď K

E,

we call the Jacobian scheme and the second degeneracy scheme of W .

Remark 4.8 (Degeneracy and Non-smooth loci). If chK ffl rkM “ degψ
(see Remark 3.5), then ψW is a redundant generator of JW due to the
Euler identity. By Lemma 3.24, Xred

W and ∆red
W are the first and second

degeneracy loci of QW (see Definition 3.21) whereas Σred
W is the non-

smooth locus of XW over K (see [Mat89, Thm. 30.3.(1)]). If in addition
K is perfect, then Σred

W is the singular locus of XW (see [Mat89, §28,
Lem. 1]). ˛

Remark 4.9 (Codimension-2 components). The non-smooth locus Σred
W

contains the intersection of any two irreducible components of XW

(see [Mat89, Thm. 30.3.(5)]). By Proposition 3.10, it follows that ΣW

has codimension 2 in KE if M is disconnected even when loops are
removed. ˛

Lemma 4.10 (Inclusions of schemes). For any configuration W Ď KE,
there are inclusions of schemes ∆W Ď ΣW Ď XW Ď KE.

Proof. By Lemma 3.24, ψW P MW and hence the second inclusion.
Let e P E and choose a basis of W as in the proof of Lemma 3.26. By
Lemma 3.24 and the matrix representations forQW in (3.22) and (3.23),
BeψW PMW . Thus, JW ĎMW and the first inclusion follows. �

Remark 4.11 (Schemes for matroids of small rank). Let W Ď KE be a
realization of a connected matroid M.

(a) Suppose that rkM “ 1. Then W is generated by p1, . . . , 1q after
scaling E and M “ U1,n is uniform where n “ |E|. It follows that
ψW “

ř

ePE xe and ∆W “ ΣW “ H.
(b) Suppose that rkM “ 2. Then ψW is a quadratic form and JW is

a prime ideal generated by linear forms. It follows that both ∆W and
ΣW are K-linear subspaces of KE and hence integral schemes.

˛

Example 4.12 (Schemes associated to a triangle). Let M be a matroid
on E P CM with |E| “ 3 and hence rkM “ |E| ´ 1 “ 2. Up to scaling
and ordering E “ te1, e2, e3u any realization W of M has the basis

w1 :“ e1 ` e3, w2 :“ e2 ` e3.

With respect to this basis

QW “

ˆ

x1 ` x3 x3

x3 x2 ` x3

˙

.
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It follows MW “ xx1 ` x3, x2 ` x3, x3y and ∆W is a reduced K-valued
point.

On the other hand

ψW “ detpQW q “ x1x2 ` x1x3 ` x2x3

and hence JW “ xψW , x1 ` x2, x1 ` x3, x2 ` x3y. The matrix express-
ing the linear generators in terms of x1, x2, x3 has determinant 2. It
follows that ΣW is reduced if and only if chK ‰ 2. ˛

Patterson proved the following result (see [Pat10, Thm. 4.1]).

Theorem 4.13 (Patterson). Let W Ď KE be a configuration. Then
there is an equality of reduced loci Σred

W “ ∆red
W . In particular, ΣW and

∆W have the same generic points. �

Remark 4.14. While Patterson assumes chK “ 0 and excludes the
generator ψW P JW , his proof works in general (see Remark 4.8). ˛

Corollary 4.15 (Cremona automorphism of the torus). Let W Ď KE

be a configuration. Then the automorphism of TE defined by xe ÞÑ ye
where xe ¨ ye “ 1 for all e P E identifies

XWXT
E
– XWKXTE, ΣWXT

E
– ΣWKXTE, ∆WXT

E
– ∆WKXTE.

In particular, ΣW , ∆W , ΣWK, ∆WK have the same generic points in
TE.

Proof. Propositions 3.12 and 3.25 yield the statements for XW and ∆W .
Since xeBxe “ yeBye , the statement for ΣW follows from that for XW .
The particular claim uses Theorem 4.13. �

Proposition 4.16 (Codimension bound). Let W Ď KE be a config-
uration. Then the codimensions of ΣW and ∆W in KE are bounded
by

codimKE ΣW “ codimKE ∆W ď 3.

In case of equality, ∆W is Cohen–Macaulay and hence pure-dimensional
and ΣW is equidimensional. Then all associated points of ∆W are
generic and all generic points of ΣW have codimension 3 in KE.

Proof. The equality of codimensions follows from Theorem 4.13. The
scheme ∆W is defined by the ideal MW of submaximal minors of the
symmetric matrix QW with entries in Krxs. Kutz proved the inequal-
ity and that MW is a perfect ideal in case of equality (see [Kut74,
Thm. 1]). In this latter case Krxs{MW “ Kr∆W s is a Cohen–Macaulay
ring (see [BH93, Thm. 2.1.5.(a), 2.1.9]). The remaining claims are due
to Lemma 4.6 and Theorem 4.13. �
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4.3. Deletion of (co)loops. In this section we consider a matroid
that is connected after deletion of all (co)loops. Here the Jacobian
and second degeneracy schemes can be described explicitly. In addi-
tion to components of the connected deletion the (co)loops give rise to
components of codimension 2.

Lemma 4.17. Let R be a ring, I ER an ideal and p P I. Then

x ¨ Irxs ` xpy “ Irxs X xp, xyERrxs,

where x is an indeterminate.

Proof. The non-trivial inclusion Ě follows from x¨Irxs “ IrxsXxxy. �

Lemma 4.18 (Ideals and deletion of (co)loops). Let M be a matroid
with realization W . For any e P E

JW “

#

JW zerxes if e is a loop,

JW zerxes X
@

ψW ze, xe
D

if e is a coloop,

and

MW “

#

MW zerxes if e is a loop,

MW zerxes X
@

ψW ze, xe
D

if e is a coloop.

Proof. By Proposition 3.14 and Lemma 3.26, the claim is clear if e
is a loop. Suppose that e is a coloop. Note that ψW ze P JW ze by
definition and ψW ze P MW ze by Lemma 3.24. By Proposition 3.14 and
Lemma 4.17,

JW “
@

ψW ze
D

` xe ¨ JW zerxes “ JW zerxes X
@

ψW ze, xe
D

.

By Lemmas 3.26 and 4.17,

MW “
@

ψW ze
D

` xe ¨MW zerxes “MW zerxes X
@

ψW ze, xe
D

. �

Proposition 4.19 (Schemes and deletion of (co)loops). Let M be a
matroid with realization W . Denote by L,C Ď E the sets of loops and
coloops of M. Consider M1 :“ MzpLYCq and W 1 :“ W zpLYCq. Then

ΣW “
`

ΣW 1 ˆKLYC
˘

Y
ď

ePC

`

XW 1 ˆKLYCzteu
˘

Y
ď

CQe‰fPC

V pxe, xf q

and

∆W “
`

∆W 1 ˆKLYC
˘

Y
ď

ePC

`

XW 1 ˆKLYCzteu
˘

Y
ď

CQe‰fPC

V pxe, xf q.

Proof. By Lemma 4.18 and induction on |LY C|, we have

JW “ JW 1rxLYCs X
č

ePC

xψW 1 , xey X
č

CQe‰fPC

xxe, xfy

and
MW “MW 1rxLYCs X

č

ePC

xψW 1 , xey X
č

CQe‰fPC

xxe, xfy.

The claim follows by taking associated affine schemes. �
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4.4. Generic points and codimension. In this subsection we show
that the Jacobian and second degeneracy schemes reach the codimen-
sion bound of 3 in case of connected matroids. The statements on
codimension and Cohen–Macaulayness in our main result follow. In
the process we obtain a description of the generic points in relation
with any non-disconnective handle.

Lemma 4.20 (Primes over the Jacobian ideal). Let W Ď KE be a
realization of a connected matroid M, and let H P HM be a proper
handle.

(a) For any h P H, xHzthu ¨ ψW zH P JW .

(b) For any e, f P H with e ‰ f , xHzte,fu ¨ ψW zH P JW ` xxe, xfy.

(c) For any d P H and e P EzH, xHztdu ¨ BeψW zH P JW ` xxdy.
(d) If p P SpecKrxs with JW Ď p S ψW zH , then xxe, xf , xgy Ď p for

some e, f, g P H with e ‰ f ‰ g ‰ e.

Proof. By Corollary 3.15, we may assume that

ψW “
ÿ

hPH

xHzthu ¨ ψW zH ` x
H
¨ ψW {H .

(a) Using that ψW is a linear combination of square-free monomials
(see Definition 3.2,

xHzthu ¨ ψW zH “ ψW |xh“0 “ ψW ´ xh ¨ BhψW P JW .

(b) This follows from

JW Q BeψW “
ÿ

hPH

xHzte,hu ¨ ψW zH ` x
Hzteu

¨ ψW {H

” xHzte,fu ¨ ψW zH mod xxe, xfy.

(c) This follows from

JW Q BeψW “
ÿ

hPH

xHzthu ¨ BeψW zH ` x
H
¨ BeψW {H

” xHztdu ¨ BeψW zH mod xxdy.

(d) By (a), the hypotheses force xHzthu P p for all h P H and hence
xxe, xfy Ď p for some e, f P H with e ‰ f . Then xHzte,fu P p by (b)
and the claim follows.

�

Lemma 4.21 (Inductive codimension bound). Let W Ď KE be a re-
alization of a connected matroid M, and let H P HM be a proper non-
disconnective handle. If codimKEzH ΣW zH “ 3, then ΣW is equidimen-
sional of codimension 3 in KE with generic points of the following types:

(a) p “ xxe, xf , xgy “: p1 for some e, f, g P H, e ‰ f ‰ g ‰ e,
(b) p “

@

ψW zH , xd, xe
D

“: p2 for some d, e P H, d ‰ e,
(c) ψW zH , ψW {H P p S xe, for all e P H.
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Proof. Since H is non-disconnective ψW zH is irreducible by Proposi-
tion 3.10. In particular, pi P SpecKrxs with height pi “ 3 for i “ 1, 2.

Let p P SpecKrxs be any minimal prime over JW . By Proposi-
tion 4.16, it suffices to show for the equidimensionality that height p ě
3. This follows in particular if p contains a prime of type p1 or p2.
By Lemma 4.20.(d), the former is the case if ψW zH R p. We may thus
assume that ψW zH P p.

First suppose that xd P p for some d P H. By Lemma 4.20.(c), then

xHztdu ¨ BeψW zH P p

for all e P EzH. If xHztdu P p, then p contains a prime of type p2.
Otherwise JW zH ` xxdy Ď p. Since JW zH E KrxEzHs but d P H, the
codimension hypothesis implies that

heightpJW zH ` xxdyq “ 4.

It follows that height p ě 4 which can not occur.
Now suppose that xh R p for all h P H and hence ψW {H P p by

Corollary 3.15. By Lemma 4.20.(c), then

xHztdu ¨ BeψW zH P p` xxdy

for any d P H and e P EzH. Thus any minimal prime q over p ` xxdy
contains one of the ideals

@

ψW zH , ψW {H , xd, xh
D

, JW zH ` xxdy

for some h P Hztdu. Both have height at least 4: the first one since
degψW {H ă degψW zH by Lemma 2.3.(e) (see Remark 3.5) and ψW zH
is irreducible, the second by hypothesis. Thus height q ě 4 and hence
heightpp` xxdyq ě 4 and then height p ě 3 by Lemma 4.1.(b). �

Lemma 4.22 (Generic points for circuits). Let W Ď KE be a realiza-
tion of a matroid M on E P CM with |E| ´ 1 “ rkM ě 2. Then Σred

W is
the union of all codimension-3 coordinate subspaces of KE.

Proof. We apply the strategy of the proof of Lemma 4.21. Let p P
SpecKrxs be any minimal prime over JW . If ψW zH R p for some E ‰

H P HM, then by Lemma 4.20.(d) p contains xe, xf , xg where e, f, g P H
with e ‰ f ‰ g ‰ e. Otherwise p contains xEzH “ ψW zH P p for all
E ‰ H P HM and hence all xe where e P E (which can only occur if
|E| “ 3). By Proposition 4.16, it follows that p “ xxe, xf , xgy where
e ‰ f ‰ g ‰ e. By symmetry, all such triples e, f, g P E occur (see
Example 3.7). �

Theorem 4.23 (Cohen–Macaulayness of degeneracy schemes). Let
W Ď KE be a realization of a connected matroid M of rank rkM ě 2.
Then ∆W is Cohen–Macaulay (and hence pure-dimensional) and ΣW

is equidimensional of codimension 3.
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Proof. By Proposition 4.16, it suffices to show that codimKE ΣW “ 3.
Lemma 2.9 yields a circuit C P CM of size |C| ě 3 and codimKC ΣW |C “

3 by Lemma 4.22. By Lemma 4.21 and induction over a handle decom-
position as in Proposition 2.5, then also codimKE ΣW “ 3. �

Corollary 4.24 (Types of generic points). Let W Ď KE be a realiza-
tion of a connected matroid M of rank rkM ě 2, and let H P HM be a
non-disconnective handle such that rkpMzHq ě 2. Then each generic
point p of ΣW is of a type listed in Lemma 4.21 with respect to H.

Proof. Applying Theorem 4.23 to the matroid MzH with realization
W zH the claim follows from Lemma 4.21. �

Remark 4.25. In the presence of a disconnective handle H P HM other
types of generic points of ΣW may appear such as xψ1, ψ2, xdy where
ψW zH “ ψ1 ¨ ψ2 and d P H. ˛

Corollary 4.26 (Generic points for 3-connected matroids). Let W Ď

KE be a realization of a 3-connected matroid M of rank rkM ě 2 with
|E| ą 3. Then all generic points of ΣW lie in TE.

Proof. Let p be a generic point of ΣW and pick any e P E. By Propo-
sition 2.4, H :“ teu P HM is a non-disconnective 1-handle. Moreover
rkMzH “ rkM ě 2 by Lemma 2.3.(e). Then Corollary 4.24 forces p
to be of type (c) in Lemma 4.21, that is, p R V pxeq. It follows that
p P

Ş

ePE Dpxeq “ T
E. �

4.5. Reducedness of degeneracy schemes. In this subsection we
prove the reducedness statement in our main result following the strat-
egy outlined in the introduction.

Lemma 4.27 (Reducedness for the prism). Let W be any realization
of the prism matroid M (see Example 2.18). Then ∆W XDpx1 ¨ ¨ ¨ x6q is
a reduced linear variety of codimension 3, defined by 3 linear binomials
each supported in one of the handles. If chK ‰ 2, then also ΣW X

Dpx1 ¨ ¨ ¨ x6q is reduced.

Proof. By Lemma 2.19, the matrix of QW can be chosen to be (see
Definition 3.21)

QW “

¨

˚

˚

˝

x1 ` x2 0 0 x1

0 x3 ` x4 0 x3

0 0 x5 ` x6 x5

x1 x3 x5 x1 ` x3 ` x5

˛

‹

‹

‚

.
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Reducing its entries modulo p :“ xx1 ` x2, x3 ` x4, x5 ` x6y makes all
its 3ˆ 3-minors 0. Therefore JW ĎMW Ď p. Using the minors

QW p3, 2q “ px1 ` x2q ¨ p´x3x5q,

QW p4, 2q “ px1 ` x2q ¨ p´x3q ¨ px5 ` x6q,

QW p4, 3q “ px1 ` x2q ¨ px3 ` x4q ¨ x5,

QW p4, 4q “ px1 ` x2q ¨ px3 ` x4q ¨ px5 ` x6q,

one computes that

QW p4, 4q ´QW p4, 3q `QW p4, 2q ´QW p3, 2q “ px1 ` x2q ¨ x4x6.

By symmetry, it follows that x2x4x6 ¨ p ĎMW and hence

∆W XDpx2x4x6q “ V ppq XDpx2x4x6q.

With ψW “ detpQW q one computes that

px2 ¨ px2B2 ´ 1q ` x4x6 ¨ pB3 ` B5q ` px4 ` x6q ¨ p1´ x4B4 ´ x6B6qqψW

“ 2 ¨ px1 ` x2q ¨ x
2
4x

2
6.

By symmetry, it follows that 2 ¨ x2
2x

2
4x

2
6 ¨ p Ď JW and hence

ΣW XDpx2x4x6q “ V ppq XDpx2x4x6q.

if chK ‰ 2. �

More details on the prism matroid can be found in Example 5.1.

Lemma 4.28 (Reduction and deleting non-(co)loops). Let e P E be a
non-(co)loop of a matroid M. Identify Krxs{xxey “ KrxEzteus and set

I :“ pI ` xxeyq{xxey E Krxs{xxey for any I E Krxs. Then JW ze Ď J̄W
and MW ze “ M̄W for any realization W of M.

Proof. This follows from Proposition 3.14 and Lemma 3.26. �

Lemma 4.29 (R0 and deleting non-(co)loops). Let W Ď KE be a
realization of a matroid M, and let e P E be a non-(co)loop. Then
ΣW ze “ H implies ΣW “ H. Suppose that Dpxeq contains all generic
points of ΣW and that ΣW and ΣW ze are equidimensional of the same
codimension. If ΣW ze is R0, then ΣW is R0. In this case, each p P
Min ΣW defines a subset ϕppq Ď Min ΣW ze such that

V ppq X V pxeq “
ď

qPϕppq

V pqq

and ϕppq X ϕpp1q “ H for p ‰ p1. In particular,

|Min ΣW | ď
ˇ

ˇMin ΣW ze

ˇ

ˇ.

The same statements hold for Σ replaced by ∆.
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Proof. With notation from Lemma 4.28 the subscheme ΣW X V pxeq Ď
KEzteu is defined by the ideal J̄W . By Lemma 4.28 and homogeneity,

ΣW ze “ H ðñ JW ze “ KrxEzteus ùñ JW ` xxey “ Krxs

ùñ JW “ Krxs ðñ ΣW “ H

which is the first claim.
Any generic point of ΣW is represented by a prime p P SpecKrxs

minimal over JW . Let q P SpecKrxs be minimal over p` xxey and set
q̄ :“ q{xxey P SpecKrxEzteus. Since xe R p Lemma 4.1 shows that

height q “ height p` 1, height q “ height q´ height xxey “ height p.

By Lemmas 4.6 and 4.28 and the dimension hypothesis, it follows that
q̄ is minimal over both J̄W and JW ze and hence represents a generic
point of both ΣW X V pxeq and ΣW ze.

Consider now p and q as elements of ΣW and denote by t P KrΣW s

the image of xe. Then q is minimal over t and hence t a parameter
of R :“ KrΣW sq. By Lemma 4.4, R is a domain with unique minimal
prime pq. Thus KrΣW sp “ Rp is reduced and p is uniquely determined
by q. With ϕppq the set of all possible q the remaining claims follow.

The preceding arguments remain valid if Σ and J are replaced by ∆
and M respectively. �

Lemma 4.30 (Initial terms and contracting non-(co)loops). Let W Ď

KE be a realization of a matroid M. Suppose E “ F \G is partitioned
in such a way that M{G is obtained by successively contracting non-
(co)loops. For any ideal J EKrxsxG denote by J inf the ideal generated
by the lowest xF -degree parts of the elements of J . Then JW {Grx

˘1
G s Ď

pJW q
inf
xG and MW {Grx

˘1
G s Ď pMW q

inf
xG.

Proof. We iterate Proposition 3.14 and Lemma 3.26 respectively to pass
from W to W {G by successively contracting non-(co)loops e P G. This
yields a basis of W extending a basis w1, . . . , ws of W {G such that, for
all i, j P 1, . . . , s,

ψW “ xG ¨ ψW {G ` p, QW pi, jq “ xG ¨QW {Gpi, jq ` qi,j,

where p, qi,j P Krxs are polynomials with no term divisible by xG. Both
ψW and QW pi, jq are homogeneous K-linear combinations of square-
free monomials (see Definition 3.2 and Lemma 3.26). It follows that
xG ¨ψW {G and xG ¨QW {Gpi, jq are the respective lowest xF -degree parts
of ψW and QW pi, jq. The claimed inclusions follow. �

Lemma 4.31 (R0 and contracting non-(co)loops). Let W Ď KE be a
realization of a matroid M. Suppose E “ F \G is partitioned in such
a way that M{G is obtained by successively contracting non-(co)loops.
Then ΣW {G “ H implies ΣW X DpxGq X V pxF q “ H. Suppose that
ΣWXDpx

Gq and ΣW {G are equidimensional of the same codimension. If
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ΣW {G is R0, then ΣWXDpx
Gq is R0 along V pxF q. The same statements

hold for Σ replaced by ∆.

Proof. Consider the ideal

I :“ xxF yEKrΣW XDpx
G
qs “: R

“ KrΣW sxG “ pKrxEs{JW qxG “ KrxF , x
˘1
G s{pJW qxG

whereR is equidimensional by hypothesis. With notation from Lemma 4.30

R̄ “ grI R “ grIpKrxF , x
˘1
G s{pJW qxGq “ KrxF , x

˘1
G s{pJW q

inf
xG .

Lemma 4.30 then yields the first claim

ΣW {G “ H ðñ JW {G “ KrxF s ùñ R̄ “ 0

ðñ I “ R ðñ ΣW XDpx
G
q X V pxF q “ H.

We may assume now that I ‰ R, as otherwise ΣWXDpx
GqXV pxF q “

H makes the second claim void. By Lemma 4.5.(a) and the equidimen-
sionality hypotheses, the rings R̄ and

KrxF , x
˘1
G s{pJW {Grx

˘1
G sq “ pKrxF s{JW {Gqrx

˘1
G s “ KrΣW {G ˆ T

G
s

are equidimensional of the same dimension. By Lemma 4.30, the former
is a homomorphic image of the latter. It follows that

Min Spec R̄ Ď MinpΣW {G ˆ T
G
q.

Hence, if ΣW {G is R0 then so is R̄. By Lemma 4.5.(b), then R is R0

along V pIq. This means that ΣW XDpx
Gq is R0 along V pxF q.

The preceding arguments remain valid if Σ and J are replaced by ∆
and M respectively. �

Lemma 4.32 (R0 for circuits). Let W be a realization of a matroid M
on E P CM of rank rkM “ |E| ´ 1 ě 2. Then ∆W is R0. If chK ‰ 2,
then also ΣW is R0.

Proof. We proceed by induction over |E|. The case |E| “ 3 is covered
by Example 4.12. Suppose now that |E| ą 3.

By Lemma 4.22, each generic point of ΣW is of the form p “ xxe, xf , xgy
for some e, f, g P H with e ‰ f ‰ g ‰ e. Pick d P Ezte, f, gu. Then
Eztdu P CM{d and hence ΣW {d is R0 by induction. By Lemmas 4.2
and 4.31, ΣW XDpxdq is then R0 along V pxEztduq. But p P Dpxdq and
V pxEztduq Ď V ppq by choice of d. This means that ΣW is reduced at p
and hence R0.

By Theorem 4.13, ∆W has the same generic points as ΣW . Therefore
the preceding arguments remain valid if Σ is replaced by ∆. �

Lemma 4.33 (R0 and contraction of non-maximal handles). Let W Ď

KE be a realization of a connected matroid M of rank rkM ě 2. Assume
that |MaxHM| ě 2 and set

~ :“ |E| ´ |MaxHM| ě 0.
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Suppose that ΣW 1 is R0 for every realization W 1 Ď KE1 of every con-
nected matroid M1 of rank rkM1 ě 2 with |E 1| ă |E|.

(a) If ~ ą 3, then ΣW is R0.
(b) If only ~ ą 2, then ΣW is reduced at all generic points p with

p P V pxeq for some e P E.

The same statements hold for Σ replaced by ∆.

Proof. Let p P SpecKrxs with height p “ 3. Pick a subset F Ď E such
that |F XH 1| “ 1 for all H 1 P MaxHM . In this process, if xe P p
and e P H 1 P MaxHM , then take F X H 1 “ teu. If ~ ą 3, then by
Lemma 4.1.(b)

(4.7) heightpp`xxF yq ď 3`|F | “ 3`|MaxHM| ă |E| “ height xxEy.

If ~ ą 2 and xe P p, then (4.7) holds with 3 replaced by 2. Pick
q P SpecKrxs such that

(4.8) p` xxF y Ď q Ĺ xxEy.

Add to F all f P E with xf P q. This does not affect (4.8). Then xg R q
and hence xg R p for all g P G :“ EzF ‰ H. In other words,

(4.9) p P DpxGq, q P V ppq XDpxGq X V pxF q ‰ H.

By the initial choice of F , we see that G X H 1 Ĺ H 1 for each H 1 P

MaxHM. By Lemma 2.3.(d), successively contracting all elements of
G does not affect circuits and maximal handles, up to bijection, and
therefore preserves connectedness. In particular M{G is a connected
matroid on the set F and obtained by successively contracting non-
(co)loops.

Since |F | ě |MaxHM| ě 2 connectedness implies rkpM{Gq ě 1.
If rkpM{Gq “ 1, then ΣW {G “ H by Remark 4.11.(a). Then ΣW X

DpxGq X V pxF q “ H by Lemma 4.31 and hence p R ΣW by (4.9).
Suppose now p P ΣW and hence rkpM{Gq ě 2. Then ΣW {G is R0 by

hypothesis, and p P ΣW X DpxGq is along V pxF q by (4.9). By Theo-
rem 4.23 and Lemma 4.2, ΣW XDpxgq and ΣW {G are equidimensional
of codimension 3. By Lemma 4.31, ΣW is thus reduced at p and the
claims follow.

The preceding arguments remain valid if Σ is replaced by ∆. �

Theorem 4.34 (Reducedness of degeneracy schemes). Let W Ď KE

be a realization of a connected matroid M of rank rkM ě 2. Then ∆W

is reduced and agrees with Σred
W . If chK ‰ 2, then ΣW is generically

reduced.

Proof. By Theorem 4.23, ∆W is pure-dimensional. By Theorem 4.13,
the first claim follows if ΣW is R0.

First assume that chK ‰ 2. We proceed by induction over |E|. By
Lemma 4.32, ΣW is R0 if E P CM. Otherwise, by Proposition 2.5, M
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has a handle decomposition of length k ě 2. By Proposition 2.8, M
has

(4.10) ` ě k ` 1 ě 3

(disjoint) non-disconnective handles H “ H1, . . . , H` P HM. Note that
H1, . . . , H` P MaxHM X IM by Lemma 2.3.(c) and (b). In particular
rkpMzHq ‰ 0.

Suppose first that H “ thu. Then rkpMzhq ě 2 by Lemma 4.29 and
by Theorem 4.23 both ΣW and ΣW zh are equidimensional of codimen-
sion 3. By Corollary 4.24, we have xh R p for all generic points p of
ΣW . Thus ΣW is R0 by Lemma 4.29 and the induction hypothesis.

Suppose now that |Hi| ě 2 for all i “ 1, . . . , `. If ~ :“ |E| ´
|MaxHM| ą 3, then ΣW is R0 by Lemma 4.33 and the induction hy-
pothesis. Otherwise with m :“ |MaxHM|

2`` pm´ `q ď
ÿ̀

i“1

|Hi| ` pm´ `q ď |E| “ ~`m ď 3`m

and hence 2` ď
ř`
i“1 |Hi| ď 3 ` `. Comparing with (4.10) we must

have ` “ 3 and k “ 2 and |Hi| “ 2 for i “ 1, 2, 3. By Lemma 2.7,
E “ H1 \ H2 \ H3 is then the handle partition. In particular ~ “
6 ´ 3 “ 3 ą 2. By Lemma 2.19, M is the prism matroid. Then ΣW

is reduced at generic points of type 4.21.(b) by Lemma 4.33 and the
induction hypothesis and of type 4.21.(c) by Lemma 4.27. There are
no generic points of type 4.21.(a) since |Hi| ă 3 for i “ 1, 2, 3. By
Corollary 4.24, there are no other types of generic points.

The preceding arguments are valid for arbitrary chK if Σ is replaced
by ∆. �

Corollary 4.35 (Reduced degeneracy scheme with (co)loops). Let
W Ď KE be a realization of a matroid M. Suppose that M is connected
after deletion of all (co)loops. Then ∆W is reduced.

Proof. This follows from Propositions 3.10 and 4.19, Remark 4.11 and
Theorem 4.34. �

Corollary 4.35 gives evidence for the following conjecture.

Conjecture 4.36 (Reduced degeneracy scheme). For any configura-
tion W Ď KE, the scheme ∆W is reduced.

4.6. Irreducibility of Jacobian schemes. In this subsection we prove
the following companion result to Proposition 3.10.

Theorem 4.37 (Irreducibility of Jacobian schemes). Let W Ď KE be
a realization of a 3-connected matroid M of rank rkM ě 2. Then the
scheme ΣW is irreducible and the scheme ∆W is integral.

Proof. By Remark 4.11.(b), the claim holds if rkM “ 2. If |E| ď 4, then
M “ U2,n where n P t3, 4u (see [Oxl11, Tab. 8.1]) and rkM “ 2. We may
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thus assume that rkM ě 3 and |E| ě 5. By Theorem 4.34, the claim on
ΣW implies that on ∆W . The former follows from Lemmas 4.38, 4.42,
4.43 and Corollary 4.41 below. �

In the following we use notation from Example 2.20.

Lemma 4.38 (Reduction to wheels and whirls). It suffices to verify
Theorem 4.37 for M P tWn,W

nu with n ě 3.

Proof. Let M and W be as in Theorem 4.37. Since 3-connectedness
is invariant under duality also MK satisfies the hypotheses on M. By
Corollary 4.26, the generic points of both ΣW and ΣWK lie in TE. By
Corollary 4.15, irreducibility is thus equivalent for ΣW and ΣWK .

We proceed by induction on |E|. The base case |E| ď 4 is covered.
Suppose that M is not a wheel or a whirl. Since rkM ě 3, Tutte’s
Wheels and Whirls Theorem (see [Oxl11, p. 8.8.4]) yields an e P E
such that Mze or M{e is again 3-connected. We may assume the latter
case (see (2.6)). The scheme ΣW {e is then irreducible by induction
hypothesis. By Lemma 4.29, then also ΣW is irreducible. �

Lemma 4.39 (Realizations of wheels and whirls). Let W be a realiza-
tion of M P tWn,W

nu. Up to scaling E “ S \R, W has a basis

(4.11) w1
“ s1 ` r1 ´ t ¨ rn, wi “ si ` ri ´ ri´1, i “ 2, . . . , n,

where t “ 1 if M “ Wn and t P Kzt0, 1u if M “ Wn. In particular
wheels are not binary. For M “ Wn the cyclic group Zn acts on XW ,
ΣW and ∆W by “turning the wheel”.

Proof. Since S P BM we may assume that the coefficients of sj in wi

form a unit matrix, that is, wisj “ δi,j. The triangle tsj, rj, sj`1u then

forces wjrj , w
j`1
rj

‰ 0 and wirj “ 0 for i ‰ j, j ` 1. Suitably scal-

ing r1, w
2, r2, w

3, . . . , rn´1, w
n, s1, . . . , sn successively yields (4.11). The

claim on t follows from R P CWn and R P BWn respectively.
For M “ Wn, Zn acts on W , hence on ψW , hence on X and JW ,

hence on ΣW , and finally on ∆W by Theorem 4.34. �

Proposition 4.40 (Uniqueness of schemes for wheels and whirls). Let
W be a realization of M P tWn,W

nu. In terms of suitable coordinates
z1, . . . , zn, y1, . . . , yn of KE “ KS\R, ψW “ detA and MW “ In´1pAq
where

An :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

z1 y1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 yn
y1 z2 y2 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
0 y2 z3 y3 0 ¨ ¨ ¨ 0
...

. . . . . . . . . . . . . . .
...

0 ¨ ¨ ¨ 0 yn´3 zn´2 yn´2 0
0 ¨ ¨ ¨ ¨ ¨ ¨ 0 yn´2 zn´1 yn´1

yn 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 yn´1 zn

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

In particular XW , ΣW and ∆W depend only on n up to isomorphism.
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Proof. We may assume that W be the realization from Lemma 4.39.
Denote the variables corresponding to r1, . . . , rn and s1, . . . , sn by z11, . . . , z

1
n

and y1, . . . , yn respectively. Consider the linear automorphism of KE “

KS\R defined by

z1 :“ z11 ` y1 ` t
2
¨ yn, zi :“ z1i ` yi ` yi´1,

for i “ 2, . . . , n. Then QW is represented by the matrix
¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

z1 ´y1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ´t ¨ yn
´y1 z2 ´y2 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

0 ´y2 z3 ´y3 0 ¨ ¨ ¨ 0
...

. . . . . . . . . . . . . . .
...

0 ¨ ¨ ¨ 0 ´yn´3 zn´2 ´yn´2 0
0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ´yn´2 zn´1 ´yn´1

´t ¨ yn 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ´yn´1 zn

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Suitable scaling of y1, . . . , yn turns this matrix into An. �

Corollary 4.41 (Small wheels and whirls). Theorem 4.37 holds for
M “ W3 and M “ Wn for n ď 4.

Proof. By Proposition 4.40, we may assume thatMW “ Ik`1pAnq where
k “ n ´ 2. Further we are free to extend the field K. Consider the
morphism of algebraic varieties of matrices

Y :“ Knˆk
Ñ

 

A P Knˆn
| A “ At, rkA ď k

(

“: Z, B ÞÑ BBt.

Let yi,j and zi,j be the coordinates on Y and Z respectively. Then
∆W “ V pIn´1pAnqq identifies with V pz1,3, z2,4q Ď Z for n “ 4 and
with Z itself for n ď 3. Both the preimage Y of Z and for n “ 4 the
preimage

V py1,1y1,3 ` y1,2y2,3, y2,1y1,4 ` y2,2y2,4q

of V pz1,3, z2,4q are irreducible. It thus suffices to show that Y surjects
onto Z, which holds for all k ď n.

Let A P Z and I Ď t1, . . . , nu. Assume that rkA “ |I| “ k with rows
i P I of A linearly independent. Apply row operations C to make the
rows i R I of CA zero. Then CACt is non-zero only in rows and columns
i P I. Modifying C to include further row operations turns CACt into
a diagonal matrix. Extending K by square roots if necessary, we can
write CACt “ D2 where D has exactly k non-zero diagonal entries.
Then A “ BBt where B :“ C´1D considered as an element of Y by
dropping zero columns. �

Lemma 4.42 (Operations on wheels and whirls). Let M P tWn,W
nu.

(a) The bijection (see (2.5))

S \R “ E
ν
// E_ “ R \ S, si Ø ri, ri Ø si,

identifies M “ MK.
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(b) Unless n is minimal, the handle partition of Mzsi consists of non-
disconnective handles: the 2-handle tri´1, riu and singletons.

(c) Unless n is minimal, Wnzsn{rn “ Wn´1 and Wnzsn{rn “ Wn´1.

Proof.
(a) The self-duality claim is obvious (see [Oxl11, Prop. 8.4.4]).
(b) This follows from the description of connectedness in terms of

circuits (see (2.2) and Example 2.20).
(c) The operation M ÞÑ Mzsn{rn deletes the triangle tsn´1, rn´1, snu

and maps the triangle tsn, rn, s1u to tsn´1, rn´1, s1u (see (2.2) and
(2.4)). By duality, it acts on triads in the same way (see (a) and
(2.6)). The claim then follows from the characterization of wheels and
whirl by triangles and triads (see [Sey80, (6.1)]). �

Lemma 4.43 (Induction on wheels and whirls). Theorem 4.37 for
M “ Wn and M “ Wn follows from the cases n “ 3 and n ď 4
respectively.

Proof. Write Mn for Wn and Wn respectively. Let W 1 be any realization
of M{rn. Then W 1zsn is a realization of M{rnzsn “ Mzsn{rn “ Mn´1 by
Lemma 4.42.(c). By induction hypothesis and Corollary 4.26, ΣW 1zsn

is irreducible with generic point in TEztsn,rnu. By Lemma 4.29, ΣW 1 is
then irreducible with generic point in TEztrnu.

By Lemma 4.42.(b) and Corollary 4.24, ΣW zsn at most one generic

point q1 P V pyn´1, ynq while all the other generic points lie in TEztsnu.
By Corollary 4.15, the latter identify with generic points of ΣpW zsnqK in

TEztrnu. Then W 1 :“ pW zsnq
K is a realization of pMzsnq

K “ MK{sn “
M{rn (see (2.6) and Lemma 4.42.(a)). By the above, ΣW 1 is irreducible
with generic point in TEztrnu. Thus, ΣW zsn has exactly one generic

point q in TEztsnu.
By Lemma 4.29 and Corollary 4.26, ΣW has then at most two generic

points, both in TE. Assume that there are exactly two such generic
points p and p1. Again by Lemma 4.29 we may assume that

?
p̄ “ q

and
?
p̄1 “ q1 where Ī “ pI ` xxnyq{xxny.

First suppose M “ Wn with n ě 4. By Lemma 4.39, the cyclic group
Zn acts on tp, p1u by “turning the wheel”. If it acts identically, then
a

p1 ` xxiy Ě xyi´1, yiy for all i “ 1, . . . , n and hence
a

p1 ` xx1, . . . , xny “ xx1, . . . , xn, y1, . . . , yny.

Then heightpp1`xx1, . . . , xnyq “ 2n which implies height p1 ě n ą 3 by
Lemma 4.1.(b), contradicting Theorem 4.23. Otherwise the generator
of Zn switches the assignment p ÞÑ q and p ÞÑ q1 and n “ 2m must be
even. Then

a

p` xx2iy Ě xy2i´1, y2iy for all i “ 1, . . . ,m and hence
a

p` xx2, x4, x6, . . . , xny Ě xx2, x4, x6, . . . , xn, y1, . . . , yny.

This leads to a contradiction as before.
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Now suppose M “ Wn with n ě 5. For i “ 1, . . . , n denote by qi
and q1i the generic points of ΣW zsi . By the pigeonhole principle, one
of p and p1, say p, is assigned to q1i for 3 spokes si. In particular p is
assigned to q1i and q1j for two non-adjacent spokes si and sj. Then

b

p` xxi, xjy Ě xxi, xj, yi´1, yi, yj´1, yjy.

This leads to the contradiction as before.
It follows that ΣW is irreducible as claimed. �

Theorem 4.37 proves the “only if” part of the following conjecture.

Conjecture 4.44 (Irreducible Jacobian scheme and 3-connectedness).
Let M be a matroid of rank rkM ě 2 on E. Then M is 3-connected if
and only if, for some/any realization W Ď KE of M, both schemes ΣW

and ΣWK are irreducible.

5. Examples

In this section we illustrate our results with examples of prism, whirl
and uniform matroids.

Example 5.1 (Prism matroid). Consider the prism matroid M (see Def-
inition 2.18) with its unique realization W (see Lemma 2.19). Then

ψW “ x1x2px3`x4qpx5`x6q`x3x4px1`x2qpx5`x6q`x5x6px1`x2qpx3`x4q

by Example 3.8. By Lemma 4.27, ∆W has the unique generic point

xx1 ` x2, x3 ` x4, x5 ` x6y

in T6. By Corollary 4.24, there can be at most 3 more generic points
symmetric to

@

x1, x2, ψW zt1,2u
D

“ xx1, x2, x3x4x5 ` x3x4x6 ` x3x5x6 ` x4x5x6y.

Over K “ F2 their presence is confirmed by a Singular (see [Dec+18])
computation. It reveals a total of 7 embedded points in ΣW . There are
3 symmetric to each of

xx3, x4, x5, x6y and xx1, x2, x3 ` x4, x5 ` x6y

plus xx1, . . . , x6y. However ΣW is not reduced at any generic point.
Since the above associated primes are geometrically prime, the conclu-
sions remain valid over any field K with chK “ 2.

A Singular calculation over Q shows that ΣW has exactly the above
associated points for any field K with chK “ 0 or chK " 0. We believe
that this holds in fact for chK ‰ 2.
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To verify at least the presence of the these associated points in ΣW

for chK ‰ 2, we claim that
@

x1, x2, ψW zt1,2u
D

“ JW : 2ppx3 ` x4qx
2
5 ´ px3 ` x4qx

2
6q,

xx3, x4, x5, x6y “ JW : 2px1 ` x2q
2x4x6,

xx1, x2, x3 ` x4, x5 ` x6y “ JW : 2x2px3 ` x4qx
2
6,

xx1, . . . , x6y “ JW : 2px1 ` x2qpx3 ` x4qx6.

The colon ideals on the right hand side can be read off from a suit-
able Gröbner basis (see [GP08, Lems. 1.8.3, 1.8.10 and 1.8.12]). Using
Singular we compute such a Gröbner basis over Z which confirms our
claim. There are no odd prime numbers dividing its leading coeffi-
cients. It is therefore a Gröbner basis over any field K with chK ‰ 2
and the argument remains valid. ˛

Example 5.2 (Whirl matroid). Consider the whirl matroid W3 (see Ex-
ample 2.20). It is realized by 6 points in P2 with the collinearities
shown in Figure 3. Since M contracts to the uniform matroid U2,4, M

Figure 3. Points in P2 defining the whirl matroid W3.

1 4 2

3

5 6

is not regular (see [Oxl11, Thm. 6.6.6]). The configuration polynomial
reflects this fact. Using the realization from Lemma 4.39 with t “ ´1,
we find

ψW “ x1x2x3 ` x1x3x4 ` x2x3x4 ` x1x2x5 ` x2x3x5 ` x1x4x5

` x2x4x5 ` x3x4x5 ` x1x2x6 ` x1x3x6 ` x1x4x6 ` x2x4x6

` x3x4x6 ` x1x5x6 ` x2x5x6 ` x3x5x6 ` 4x4x5x6.

Replacing in ψW the coefficient 4 of x4x5x6 by a 1 yields the matroid
polynomial ψM (see Remark 3.6).

By Theorem 4.23, the configuration hypersurface XW defined by ψW
has 3-codimensional non-smooth locus. Using Singular (see [Dec+18])
we find a Gröbner basis over Z of the ideal of partials of ψM. The
only prime numbers dividing leading coefficients are 2, 3 and 5. For
chK ‰ 2, 3, 5 it is therefore a Gröbner basis over K. From its leading
exponents one computes that the non-smooth locus of the hypersurface
defined by ψM has codimension 4 (see [GP08, Cor. 5.3.14]). By further
Singular calculations, this codimension is 4 for chK “ 2, 5 and 3 for
chK “ 3. ˛
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Example 5.3 (Uniform rank-3 matroid). Suppose that chK ‰ 2, 3.
Then the configuration W “ xw1, w2, w3y Ď K3 defined by

pwijqi,j “

¨

˝

1 0 0 1 2 3
0 1 0 2 3 4
0 0 1 2 6 12

˛

‚

realizes the uniform matroid U3,6 (see Example 2.16). The entries
of QW with indices pi, jq where i ď j are linearly dependent (see
Remark 3.22). By Lemma 3.24, ψW thus depends on fewer than 6
variables. More precisely, a Singular calculation shows that ΣW has
Betti numbers p1, 5, 10, 10, 5, 1q, is not reduced and hence not Cohen–
Macaulay.

Now, take W 1 to be a generic realization of U3,6. Then the en-
tries of QW 1 with indices pi, jq where i ď j are linearly independent
(see [BCK16, Prop. 6.4]), ΣW 1 is reduced Cohen–Macaulay with Betti
numbers p1, 6, 8, 3q. So basic geometric properties of the configuration
hypersurface XW are not determined by the matroid M, but depend
on the realization W . ˛

Example 5.4 (Uniform rank-2 matroid). Suppose that chK ‰ 2 and
consider the uniform matroid U2,n for n ě 3 (see Example 2.1). A
realization W of U2,n is spanned by two vectors w1, w2 P Kn for which
(see Example 2.16)

cW,ti,ju “ det

ˆ

w1
i w1

j

w2
i w2

j

˙2

‰ 0,

for 1 ď i ă j ď n. Then

ψW “
ÿ

1ďiăjďn

cW,ti,ju ¨ xi ¨ xj,

and the ideal JW is generated by n linear forms. These forms may be
written as the rows of the Hessian matrix

HW :“ HψW
“ pcW,ti,juqi,j,

where by convention cW,ti,iu “ 0. Since uniform matroids are connected,
Theorem 4.23 implies that HW has rank exactly 3.

For n ě 4, this amounts to a classical-looking linear algebra fact:
suppose that A “ pa2

i,jqi,j P K
nˆn is a matrix with squared entries.

Then its 4 ˆ 4 minors are zero provided that the numbers ai,j satisfy
the Plücker relations defining the Grassmannian Gr2,n. An elementary
direct proof was shown to us by Darij Grinberg (see [Gri18]). ˛
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