THE COMBINATORIAL LAPLACIAN OF THE TUTTE
COMPLEX

GRAHAM DENHAM

ABSTRACT. Let M be an ordered matroid, and C,..(M) be an exterior algebra
over its underlying set E, graded both by corank and nullity. Then C.o(M) is
the simplicial chain complex of I N(M), the simplicial complex whose simplices
are indexed by the independent sets of the matroid. Dually, Cos(M) is the
cochain complex of IN(M*). We give a combinatorial description of a basis
of eigenvectors for the combinatorial Laplacian of a family of boundary maps
on the double complex, extending work by Kook, Reiner, and Stanton [11]
on IN(M). The eigenvalues are enumerated by a weighted version of the
Tutte polynomial, using an identity of Etienne and Las Vergnas [8]. As an
application, we prove a duality theorem for the cohomology of Orlik-Solomon
algebras.

1. SUMMARY

Throughout this note, let M be a matroid whose underlying set E is totally
ordered. Let L(M) be the lattice of flats of M, and p its rank function. In his survey
[1], Bjorner examines a simplicial complex IN(M) comprised of the independent
sets of M, and he relates its singular homology to that of the order complex of the
dual matroid, M*.

In [11], Kook, Reiner, and Stanton continue Bjorner’s study by explicitly deter-
mining the spectrum of the combinatorial Laplace operator on the chain complex of
IN(M). Recall that, if 9, : Cp, = Cp_1 is the boundary map in the chain complex
C., and each C), is a vector space with a positive definite inner product, then the
combinatorial Laplacian is defined to be

Ay = 6;81, + 6p+18}§+1.
They show that, for the complex they consider and a particular inner product, the
eigenvalues of the Laplacian are nonnegative integers obtained from the cardinalities
of the flats of M.

The purpose of this note is to extend their work in two different directions.
On one hand, let R be an integral domain, and a : E — R* a function that
we shall interpret as an assignment of weights from the units of R to the set E.
Extend a additively to all subsets of E. This choice of weights gives a choice of
inner products, and it turns out that the eigenvalues of the generalized Laplacian
are, more generally, the weights of the flats of M. The inner product involved is
closely related to the one introduced for hyperplane arrangements by Schechtman
and Varchenko in [15], then generalized to arbitrary matroids by Brylawski and
Varchenko in [3].
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On the other hand, let A(M) be the exterior algebra with base ring R over the
set E. A(M) has a bigrading that reflects the structure of the matroid: let

(1) AJ(M)=(esNeaA---Neg:p({er,--. ,e.}) =p)-

The usual differential on the exterior algebra makes A(M) into a double complex.
The subcomplex AP(M), generated by monomials given by independent sets, is
equivalent to the singular chain complex of IN (M) that Kook, Reiner, and Stanton
consider. Our second objective is to extend their description of the spectrum of
the Laplacian of IN(M) to what we shall call here the Tutte complex, A(M)
(Theorem 20).

Perhaps the most natural motivation for this extension is that one finds the ma-
troid and its dual play symmetric roles in the larger complex, via a pairing between
A(M) and A(M*). Also, since the dimensions of the spaces A%(M) determine the
Tutte polynomial, a generating function for the spectrum of the Laplacian is a re-
finement of both the Tutte polynomial and Kook, Reiner, and Stanton’s spectrum
polynomial Spec,,(t, q).

The last application given here is to a homological property of the Orlik-Solomon
algebra. Various authors have considered the cohomology of the Orlik-Solomon
algebra A (M) of a hyperplane arrangement M, viewed as a cochain complex under
a boundary map d(x) = w A z, where

w= Z a(H)H,

for some complex- or integer-valued weight function a: see, for example, [7, 16, 17].
Gelfand and Zelevinsky [10] have shown that

1
o — AP AP — AP(M) — 0

is a free resolution of the Orlik-Solomon algebra. In this context, the pairing be-
tween A(M) and A(M*) gives an isomorphism in cohomology for all p (Theorem 26):

HP(A*(M),d) = H™*"P(A* (M), d),

where m and n are the cardinality and rank of the matroid M, respectively.

2. LAPLACIANS

This section begins by defining the generalized Laplacians studied here (2.1),
then indicates the relation between the complex of a matroid and that of the ma-
troid’s dual (2.2). The combinatorial fact from 2.3, together with a discussion of the
kernel of the Laplacian (2.4), lead to a characterization of the Laplacian’s spectrum,
Theorem 20.

2.1. Maps. Facts about matroids used here can be found in the book by Oxley.[14]
Fix an integral domain R, and let M be an ordered matroid. Call the generators of

the R-exterior algebra ey,... ,e,,, where e; corresponds to the ith element of FE in
its given total order, and m = | E|. In order to write the monomial basis efficiently,
for any subset S = {s1,2,...,8¢} of E ordered so that s; < s;11 for all , let

es =81 ANsg A+ Absg.

We first introduce boundary maps that make the exterior algebra into a double
complex. The usual boundary map 8@ = 9(M) in the exterior algebra is defined for
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all S C E by
des) =Y _es(s)es—(s},
sES

where e5(s) = (—1)F1, if s is the kth element of S. Then d(M) is the sum of
two boundary maps 9, = 9y(M) and 8, = 0y(M). Oy : AZ(M) — AI{(M) is
given by restricting the sum to those s € S for which p(S — {s}) < p(S), while
By : A3(M) — AZ~' (M) sums over the remaining elements of S.

Fix a weight function ¢ : E — R* on the underlying set of the matroid, and
define an R-module map ¢ : A?(M) — A1(M) by
(2) dler Aea A---Aey) =aler) ‘ales) ' ---ale) et Aea A---Aey.

For subsets T C S C E, let ¢5(T) = (—1)*, where k is least number of transpo-
sitions required to sort the list of increasing elements of S, followed by increasing
elements of T'— S, into the order given by E. Then let 7 denote the map of R-
modules 7 : AY(M) — A™~ (M) given by 7(es) = eg_s on monomials eg. This
gives a bilinear form on AJ(M), for each p,q, defined by (u,v) = det(7é(u) A v).
The bilinear form is symmetric, since

— HSES a(s)il itS=T
(es,er) = {0 otherwise.

Next, let 6, 65, and J, be the adjoints to 9, 0, and 9,, respectively, with respect
to (-,-). By direct calculation, &, : AZ(M) — AZT (M) satisfies

dy(es) = Z a(s)s Nes = Z esugsy(s)a(s)esuisy

sEV sEV

where V = {s € E: p(SU {s}) = p(S)}, while d,, is given by the same expression,
with V replaced by £ — V, and § = J; + J,, acting by left-multiplication by the

element
w= Z a(s)s.
seE

Finally, define the operators Ay, = Ap(M) and A, = A, (M) by setting
Ap=0,00,+0p00,, and A, =03,00, + 0y 0dy.

When the base ring is the real numbers R and all of the weights are positive,
the inner product is positive definite. Then A, and Aj are combinatorial Laplace
operators in the traditional sense. Most of the ideas presented here are essentially
independent of the base ring, however, so we shall work with an arbitrary integral
domain R while still calling the operators above “Laplacians.”

2.2. Duality. In order to simplify notation (in the long run), AZ(M) will be re-
graded to reflect the symmetry between M and its dual. Let

3) Cpg (M) = ARZpT (M),

where n is, as usual, the rank of the matroid M. The basic properties of C,,(M)
can now be expressed in the following way.

4. Proposition. Let C,,(M) be the bigraded free R-module defined above, for a
matroid of rank n and cardinality m. Let a : E — R*.

1. Any of the four pairs of maps {Oh,0n} X {0y, 0y} make C,,(M) a double
complex.
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2. For all0 <p<n and 0 < q <m —n, there is a nondegenerate pairing
Cpg(M) ® Cop(M™) = R
given by (u,v) = det(¢p(u) Av), where ¢, depending on the weight function,
is defined in (2). Under this pairing, On(M) is adjoint to §,(M*), 6, (M) is
adjoint to 0,(M*), as well as Ap(M) to Ay(M*) and Ay(M) to Ap(M*).

Proof. To show that C,.(M) is a double complex under each choice of horizontal
and vertical boundary maps, one must verify that

OO, + 0,0, =0 and 6,0, + 0,0, = 0.

The remaining pair of identities follows by taking adjoints with respect to (-, ).

To prove the second claim, let U C FE be a set of rank n—p in M and cardinality
n — p + g, corresponding to a monomial ey € Cpy(M). Let p* denote the rank
function of M*. Since p*(E — U) = m —n — ¢ and the cardinality of E — U is
m —n + p — ¢, the monomial eg_y lies in Cyp(M™*). Since a(e) was taken to be
a unit in R for each e € E, ¢ is an isomorphism, and so is the map Cp,(M) —
Hompg(Cyp(M*), R) defined by u — (u, —).

The identities (O (u),v) = (u,d,(v)) and {6p(u),v) = (u,d,(v)), together with
the two remaining choices obtained by exchanging h and v, all follow immediately
from the formulas of Section (2.1). The adjunctions of the Laplacians are obtained
by combining the identities above. |

Equivalently, the bilinear forms (-,-) and (-, -) induce isomorphisms
Cpq(M) —— Homp(Cyp(M*), R) —— Cp(M™),
respectively. The composition ¢—7 gives isomorphisms of double complexes,
(5) ¢ 17 (Cpg(M), bh, bs) = (Cop(M*), by, b),

where {bp, b} } = {Oh,0r}, and {by, bt} = {8,,08,}. These are obtained by compos-
ing the
Extend the weight function to each subset U of E by setting
a(U) = Z a(e).
ecU
6. Corollary. For any matroid and weight function a,
Ah + Av = a(E) - Id

Proof. Let A = 60 + 9 be the Laplace operator on the whole exterior algebra. It
follows from Proposition 4(1) that A = Ay + A,. On the other hand, it is easy to
check that A(z) = a(E)z for any z € A(M). |

The generating function
(7 sp(z,y) = Zdim Cpg(M)xPy?
P.q

is called the corank-nullity polynomial, and it is well known that sy (x —1,y—1) =
ty(z,y), the Tutte polynomial. For more information about this family of matroid
invariants, refer to [5], [1], or the comprehensive treatment in [4].
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4 5 6
FIGURE 1. Affine representation of a matroid M

2.3. A Matroid Identity. In our discussion of eigenvalues, we shall require a
formula due to Kook, Reiner, and Stanton [12] that expresses the corank-nullity
polynomial in terms of characteristic polynomials of flats and their duals. Re-
call that the characteristic polynomial of a matroid M is given by x(M;t) =

> (0, X)) (X))
XeL(M)

Let us recall the terminology of activities.[5] Let M be an ordered matroid, and
S an independent set of M. Let X = [S], the smallest flat containing S. An element
e € X — S is externally active for S (in M) if it is the least element in the (unique)
circuit contained in SU{e}. Dually, for any set S C E, not necessarily independent,
let X =[S]. An element e € S is internally active in S if e is externally active in
X — S in the matroid M (X)*.

Etienne and Las Vergnas [8] have proven the following.

8. Theorem (Theorem 4.2, [8]). Let M be an ordered matroid. Every set S C E
can be written uniquely as a disjoint union S = 71(S) U m2(S) with the properties
that
1. m1(S) is an independent set in M [[m2(S)] with no externally active elements,
and
2. m2(S) has no internally active elements.

We remark that Kook, Reiner, and Stanton give an explicit algorithm in [11,
Theorem 1] to find this decomposition when S is a base of M. It is not difficult
to check that their algorithm applies without change in this more general case,
although we shall not require it in what follows.

Recall that an independent set S in M is said to have no broken circuits if it has
no externally active elements.[1] Write nbc(M) for the set of all such independent
sets S in M, although other authors have used this notation to refer to just the
bases of M.

9. Corollary. Let M be an ordered matroid. There is a bijection
f:2F > H nbc(M/X) x nbe(M(X)*),
XeL(M)
where M (X) denotes the restriction of M to X, and M(X)* its dual. The map

is given by f(S) = (m1(5),X — m2(9)), where X = [m2(S)], and the decomposition
S =m(S)Uma(S) is the one from Theorem 8.

10. Example. Consider the elements S = {1,2,4,5} of the matroid M given by
Figure 2.3. Since none of {1,2,4} are internally active and 5 is not externally
active in M/ {1,2,3,4}, it follows that 7 (S) = {5} and m2(S) = {1,2,4}. Since
X = {1,2,3,4}, we have f(S) = ({5},{3}). Conversely, nbe(M/X) = {0,{5}},

and
nbe(M(X)*) = {(Da {1},{3}.{4},{1,3},{1,4}};
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eleven other sets S C E map under f into nbe(M/X) x nbe(M(X)*).

The theorem gives the generating function identity from [12] that underlies the
structure of the Laplacian’s eigenspaces (Theorem 20).

11. Corollary ([12]). Let M be a matroid of rank n. Then

sm(z,y) = Y, (=D X (M/X; —2)x(M(X)*; —y).
XeL(M)

Proof. For any ordering of a matroid M, the coefficient of ¢? in (—1)"x (M, —t)
counts the number of independent sets of rank p(M) — p, with external activity
zero. [1, (7.4.2)] The corank-nullity polynomial sps(z,y) is a generating function
for all subsets of the underlying set. Keeping track of the grading on both sides of
the bijection of Corollary 9 establishes the identity. |

2.4. Eigenspaces. We begin examining the eigenspaces of the Laplacian with the
zero eigenspace. In the real, positive-definite case, the kernel of the Laplacian has
a natural interpretation as homology, which we defer to section 3.3. Here, we give
an explicit basis for a submodule A,(M) of the kernel of A,. Under a genericity
assumption on the weights, we show later that the containment of A,(M) in the
kernel is an isomorphism.

The first step is to recall the definition of the Brylawski and Varchenko’s flag
complex F*(M) from [3]. The basis is the set of flags of flats (FO, F!, ...  FP),
where 0 = F < F' < ... < FP, and p(F") = i, modulo the relations

S (FO,... Fi,... FP) =0

Fi
for each 1 < i < p. Note that FP(M) = H)V(L(M)), the Whitney homology of the
order complex of M.[13] Define a map BP : F? — C,,_, ¢ for F = (F°,... ,FP) by

(12) B(F) = a(s1)a(s2) - -~ alsp)ev,
Ues
where S consists of sets U = {s1,...,s,} for which s; € F¢ and s; ¢ Fi~!, for

1 < i < p. This map lifts Brylawski and Varchenko’s map in [3] from the Orlik-
Solomon algebra to the exterior algebra; however, their proof that (12) is well-
defined remains valid here.

13. Definition. For 0 < p < n, let A,(M) = im B™ P C Cpo(M). Its properties
are summarized by the next proposition:

14. Proposition.

1. A,(M) is a chain complex under the restriction of both boundary maps Oy
and O,

2. A, (M) lies in the zero eigenspace of A,(M) and the a(E)-eigenspace of
Ap(M).

3. Dually, A,(M*) = Co.(M) is in the a(E)-eigenspace of A,(M).

Proof. The first claim is proven by noting that F*(M) is a (co)chain complex with
two boundary maps, and B : F*(M) — Cp_.o(M) is a chain map: see [15].
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The two parts of the second claim are equivalent, by Corollary 6. To prove
the first part, it is sufficient to show that §,B(F) = 0 for any flag F' € FP(M).
Explicitly,

0,B(F) = Z a(s)a(s1)a(sz2)---a(sp)es A ey,

Ues
seE-U

where S is the defined for equation (12) and s € X* but s ¢ X* ! for some
1 <i < p. By exchanging s with s;, we see that each term in the sum occurs twice,
with opposite signs.

The injection in the third claim comes from restricting the isomorphism 7¢, from
(5). That A,(M*) is in the a(E)-eigenspace of A, (M) follows by combining this
with part (2). |

Recall that the characteristic polynomial is a generating function for the dimen-
sions of F"~*(M).[1] We show that B? : F» — A,,_, is an isomorphism, in order
to conclude that

(15) Y dim(A, (M)t = (=1)"x(M; ).
p=0

In fact, the next proposition makes a slightly stronger statement.

16. Proposition. For any matroid M and weight function a : E — R*, the map
B P F*"P(M) — A, is an isomorphism, and the inclusion A, — Cpo(M) has a
splitting.

Proof. Only a sketch is given, since the proof is substantially the same as that of
Theorem 14 in [11]. FP(M) has a basis consisting of flags of the form

F = (0, [sp], [Sps Sp=1]s+ -+ s [Sps--- +51]),

where s; < s < ---s, are the elements of an independent set with external ac-
tivity zero.[1] Let V' denote the submodule of Cyp_p, (M) generated by monomi-
als eg for which S has external activity zero. Then dimV = dimF?(M). Let
7 : Cpep,o(M) = V be the projection map that kills all other monomials. It is not
hard to check that, on a flag F' from the basis above, 7o B : FP(M) — V satisfies

7B(F) =a(s1) ---a(sp)es,

where s; is the least element of F* — F*~! for 1 < i < p. Since the weights a(s)
are units in R, 7B is a R-module isomorphism. It follows that B? : F*(M) —
Cr—p,o(M) is an injection, and has a splitting.

2.5. The main result. We have shown that the kernel of the Laplacian is isomor-
phic to the flag complex. All of the eigenspaces of A, can be described in a similar
way, and the description is the main result of this note, Theorem 20. We begin by
showing, as in [11], that the Laplacian obeys the Leibniz rule on certain subspaces.

17. Lemma. Let X be a flat of a matroid M. Let es € C,,(M/X) and er €
C..(X) be monomials for which S is independent in M/X, and T spans X. Then

Av(M)(ES A eT) = Av(M/X)(eg) Ner +es N\ Av(X)(eT).



8 GRAHAM DENHAM

Proof. First check that
(18) 8o(M)(es A er) = 8,(M/X)(es) A er + (=1)Sles A §,(X)(er).

From the description of the maps in Section 2.1,

0,(M)(es Ner) = Z ale)e Neg ANer + Z ale)es A er
ecVN(E-X) ecVNX
= Z ale)e Aes Aer + (—1)1%leg A Z ale)e Aer,
eeVN(E-X) eeVNX
where

V=A{e:pu(SUT U{e}) =pu(SUT)}.
Since T spans X, pp/x(U) = pu(UUT) — ppr(X) for any subset U C E — X, so

VN(E-X)={e:pu/x(SU{e}) = pryx ()} -
Again, since T spans X, VN X = X. Claim (18) follows.
Using a similar argument, one finds that
(19) dy(M)(es A er) = 8,(M/X)(es) Aer + (—1)Sles A 8, (X)(er).

The lemma is proven by combining (18) and (19). |

Recall that A,(M) (from Definition 13) is the kernel of A, (M).

20. Theorem. Let M be a matroid and L(M) its lattice of flats. Leta : E — R*
be a weight function.

1. For a flat X of M, the image of the injection
ox : Ap(M/X) ® Ag(M(X)*) = Cpe(M)
defined on monomials by ox(es ® er) = es Aex—_7 is the a(X)-eigenspace of
A, (M) on Cpe(M). If R is a field, all eigenvectors of A, appear in this way.
2. The images of ox and oy are orthogonal with respect to the inner product

(,°), for flats X £ Y.
3. The map

o: @ Ap(M/X) ® Ag(M(X)*) = Cpe(M),
XeL(M)
where o0 = @XGL(M) ox, is an injection. Quer the fraction field of R, o is
an isomorphism.

A flat X is said to be cyclic if M(X) contains no ithsmuses. Note that we
may restrict the sum above to cyclic flats, for if M(X) contains an ithsmus,
A (M(X)*)=0.

Proof. Clearly each map ox is an injection. We show first that the image of ox is in-
deed contained in the a(X)-eigenspace of A,. Note that the R-modules A,(M/X)®
A,(M(X)*) themselves do not have monomial bases; strictly speaking, then, ox
is defined by restriction from Cpo(M/X) ® Cyo(M(X)*). Let u = Y g gcses and
v = Y ey Cier be arbitrary elements of A,(M/X) and A,(M(X)*), respectively.
Since A,(M/X) is contained in the independence complex Cpo(M/X), each S € S
is independent in M/X. For the same reason, each T' € T is independent in the
matroid M (X)*, which means that X — T spans M (X). Therefore ox (u ® v) sat-
isfies the conditions of Lemma 17. By Proposition 14, u is a zero eigenvector of
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A,(M/X), and v is a a(X)-eigenvector of A,(M(X)*). It follows from Lemma 17
that ox (u ®v) is a 0 + a(X) eigenvector of A, (M), as required.
In order to prove Assertion 2, let

(21) P =Z[{b,,b;" : s € E}],

the ring of Laurent polynomials in the weights. Under the natural weight function
a: E — P, the eigenvalues are all distinct. Since A, is self-adjoint with respect to
(-, "), the a(X)- and a(Y')-eigenspaces are orthogonal. Any weight function factors
through P, and the orthogonality is preserved by a change of rings.

It follows that we have an injection

o: P AM/X)® A (M(X)*) = Cpo(M).
X€eL(M)

Counting ranks using Corollary 11 and (15) proves Assertion 3. That is, if R is a
field, then the map is an isomorphism. |

Over a field, the map o is an isomorphism. In general, though, the eigenspaces
of A, do not span the operator’s domain. The gap between the two is addressed
by the remark following Theorem 26.

In order to recover the results of [11], which we claim to have generalized, let
g=0anda: E — R bya(s) =1 for all s € E. For any matroid M of rank n and
cardinality m,

Ao(M) = F™(M) = H, (M) = Hy2(L(M)) = Hp 1 (IN(M)),

from [1]. Since (Cp—p,o(M),0) is isomorphic to the singular chain complex of
IN(M), and its Laplacian A}, satisfies Ay, = m -Id — A,, Theorem 20 gives the
eigenspace decomposition of Ap.

3. INTERPRETATION

3.1. Generating Functions. One can form a generating function that encodes
only the eigenvalues of A, and their multiplicities, using Theorem 20. Let b =
{bs : s € E} be a set of indeterminates, and write bx = [],.x bs. Set

®p(z,y,b) = Z cpg(X)xPylbx
P,9€Z
X€eL(M)
where the coefficient cp,(X) is the dimension of the a(X)-eigenspace of A.,,. By
Theorem 20, all of the eigenvalues have this form. ®,; has some immediate prop-
erties:
L ®y(z,y,b) = 3 (=1)"XIx(M/X;—2)x(M(X)*; —y)bx;
XeL(M)
2. @M(!E, yvb) = bE'(I)M* (yaxa {be_l})a
3. ®pr(z,0,{b. < q}) = z"Spec,,(z71,q).

The first restates Theorem 20, while the second uses Proposition 4(2) and Corol-
lary 6. The last statement follows from Corollary 17 of [11].
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22. Example. Let M be the matroid of Figure 2.3. The table below lists the
cyclic flats X, together with the characteristic polynomials of M(X)* and M/X.

X (—1)PME N (M (X)*, —y) | ()M (M/X, —x)
0 1 4+ 8x + 522 + 23
{1,2} 1+y 2 + 3z + 22
{4,5,6} 1+y 1+
{1,2,3,4} 2+ 3y +y° l+z
{1,2,3,4,5,6} 448y +5y° +¢° 1

The first identity indicates how to calculate @ 5r(z,y,b):

®pr(z,y,b) = (2° + 52 + 8z + 4) + (2®y + 2% + 3zy + 3z + 2y + 2) bibs +
+ (zy + x4+ y + 1) babsbs + (zy” + 3zy + y* + 22 + 3y + 2) bibabsbs +
+ (y° +5y° + 8y +4) by - b.
By specializing according to identity 3, we find that the spectrum polynomial
t"Spec,,(t 71, q) = Z dim (A0 (M))atig
Ap

equals
4+ 8t + 517+ + (2+ 3t +t2)g” + (L + )¢ + (2 + 2t)q* + 44°,
where Ay denotes the A-eigenspace of an operator A.

The next theorem refines well-known formulas for the corank-nullity and Tutte
polynomials.

23. Theorem. For any ordered matroid M,

1. ®p(z,y,b) = 3 20 S)ymul(S)py where cor(S) =n — p(S), nul(S) = |S| —
SCE
p(S), and X = [m2(S)] (from Theorem 8).
2. ®py(x—1,y—1,b) = > xi(B)ye(B)b[WZ(B)], where i(B) and e(B)
bases B of M
are, respectively, the number of internally and externally active elements of
B.

Proof. The first follows by comparing the first identity in this section with Corol-
lary 9. The second is an application of [8, Corollary 5.4]. |

3.2. Reconstruction. For a flat X of M, let o*(X) = dim H,(x)_1(IN(X)). In
[11], Kook, Reiner, and Stanton ask to what extent Spec,,(t, q) determines tpr(z,y),
since

t"Specy (—t 1) = Y ()" "M (X)X Ix(M/X; ),
XeL(M)

while the polynomial
Xut)= Y ¢¥Ix(M/X;t)
XeL(M)

equals ¢ty (z,y) under a change of variables. Brylawski calls X ,,(¢,q) the Poincaré
polynomial of M; see [4].
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While it is not known whether or not Spec,,(t,q) determines the Tutte polyno-
mial, it is relatively easy to see that the weighted version of the question has an
affirmative answer.

24. Proposition. Let M be a matroid with underlying set E. From ®y(x,0,b)
one can determine the list of flats of M, hence the isomorphism class of the matroid.

Proof. We have

Dp(e,0,b) = D (-1)" P Na(X)x(M/X;—z)bx.
XeL(M)

Recall that x(M/X;—z) = 0 only if M/X contains loops and a*(X) = 0 only if X
contains an isthmus. Since M /X never contains a loop, the product bx gives the
members of each cyclic flat X. The degree of x(M/X; —z) provides the rank of X.
Using [14, Ex. 13, p. 78], one can reconstruct the matroid from this information.

3.3. Cohomology of the Orlik-Solomon Algebra. This section applies the
results of Section 2 to interpret the homology of the Tutte complex.

The first step is the definition of the Orlik-Solomon algebra of a matroid M: let
A" P(M) = Cpo/0y(Cp1), the quotient of independent p-tuples by the boundaries of
circuits. A*(M) is a (co)chain complex in two ways, with boundary maps induced
by both 8, and §,. Its algebra structure is inherited from the exterior algebra.
The Orlik-Solomon algebra was introduced originally in [2] and [13] to describe the
cohomology ring of the complex complement of a hyperplane arrangement, though
many of its interesting properties extend to arbitrary matroids. [9, 3, 1]

By this definition, A®~?(M) is the zero homology module of the chain complex
(Cpe (M), d,). More generally, we have the following proposition, which was proven
for hyperplane arrangements by Gel’fand and Zelevinsky. [10]

25. Proposition.

8,, 811
= Cp1 (M) —— Cpo(M) —— A" P(M) —=0
is a free resolution of the Orlik-Solomon algebra of M, as a chain or cochain com-
plex. Dually,

- ——= C14(M) i’ Cog(M) ——= A™ " 4(M*) —=0
is also a free resolution.

Proof. We show that the first sequence above is exact at C,,(M) for ¢ > 0. It is
sufficient to do so for the natural weight function a : E — P, where P is the ring
of Laurent polynomials over E. For short, let H, = Hy(Cy.,0,). Since §, is a
chain homotopy for the chain complex (Cpq,0y), A, induces the zero map on the
homology module H,. Therefore det(A,) annihilates H;. Theorem 20(1) shows
that, when ¢ > 0,
detA, = J[  a(X)kx
XeL(M)—{0}

for some nonnegative integers kx. Since 3, does not depend on the weight function,
though, det(A,)H, = 0 implies that H, = 0, as required.



12 GRAHAM DENHAM

To show that the second sequence is exact for each ¢, 0 < ¢ < m — n, use (5):
¢~ 17 is an isomorphism, hence a quasiisomorphism:

_lT

(Cog(M),0y) = (Cqu(M7),0p).
|

If the weight function a is real and positive, then A, is a Laplacian in the strict
sense, and has the well-known property that its kernel is isomorphic to the homology
of the complex. Note that in general, however, the kernel of A, is larger, if the
weight function satisfies a(X) = 0 for a flat X # 0.

The homology of the total complexes (C,,(M),dy,d,) and (C.,, dy,0,) are zero,
since they are the reduced cellular (co)chain complexes of a solid simplex with
vertices E. Let us consider the other two pairs of boundary maps.

Let d : AP — APt! denote the boundary map induced by dy,, and let a : E — R*
be a weight function of a matroid M. Suppose that R = C and that M is realizable
over C. Then HP(A*(M),d) has an interpretation as cohomology of sections of a
line bundle, parameterized by the weight function, over the complement of the
hyperplanes in complex space; refer to [17] or [7, 16]. In that case, the following
theorem could be proven geometrically.

26. Theorem. For any matroid M, of rank n and cardinality m, there is an iso-
morphism

(27) H""P(A*(M),d) = H™""P(A*(M"),d).
Proof. By Proposition 25,
HYYCW(M),8,,6,) = H"P(A*(M),d)
= H™P(AN(MY),d),

taking homology with respect to 9, followed by §, first, then taking homology in
the reverse order and using (5).

It should be mentioned that the theorem cannot be extended to more gen-
eral weight functions: a : E — R with images not in R*. For example, let
R = Z[{bs : s € E}] and consider the natural weight function a : E — R. Then
Eisenbud, Popescu, and Yuzvinsky [6, Theorem 3.1] have shown, in the context
of hyperplane arrangements, that HP(A*(M),d) = 0 for all p # n, and that the
module H"(A*(M),d) has projective dimension n over R. Furthermore, they show
that the complex (A"~ *(M),d) is in fact a minimal free resolution over R of the top
cohomology module. In this case, then, the isomorphism (27) will fail. However, by
localizing R to invert the weights, one obtains the natural weight function function
a: E — P (from (21)). Then Theorem 26 applies to their result to show that

H"(A*(M),d) = H™ "(A*(M"),d)
is a P-module whose support has codimension 3, Crapo’s beta-invariant, and
H""P(A*(M),d) = H™ ""P(A*(M"),d) =0

for p #0.
We make a final remark. Let

oo, = @@ A (M/X)® A(M(X)").
XeL(M)



THE COMBINATORIAL LAPLACIAN OF THE TUTTE COMPLEX 13

For all X at least one of the complexes (A4,(M/X),d) and (A,(M(X)*),ds) is ex-

act,

of

so the total complex of (CD, (M), dy, d4) is also exact. The long exact sequence

0——C% (M) —"= C,.,(M) — coker (6) —=0

shows that, for all p,

IR

Hy!(coker (0), 8y, 0n) = Hp(C.. (M), 0y, 01)

=~ {7 P(A* (M), d).

In particular, for weight functions a : E — R* that give the Orlik-Solomon algebra
nonzero cohomology groups, the inclusion o of the Laplacian’s eigenspaces into the
Tutte complex is not an isomorphism.

In this case, it should be possible to relate the cokernel of ¢ to Brylawski, Schecht-
man, and Varchenko’s determinant formulas in [3, 15].

The author would like to thank Victor Reiner for his thoughtful comments on
an earlier version of this manuscript.
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