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1. Introduction

One facet of recent work on hyperplane arrangements is the influence of rational
homotopy theory and the appearance of some interesting homological algebra. Ar-
rangement complements are formal in the sense of Sullivan, and their cohomology
rings are well-understood. On the other hand, the combinatorics of the cohomol-
ogy ring is quite intricate (see [14]), which leads to some interesting and unsolved
problems. Providing a complete survey of the rational homotopy theory of hyper-
plane arrangements is beyond the scope of these lecture notes; the objective here
is instead to use two related topics to give some idea of the existing literature
and future directions. Koszul duality plays a somewhat unifying role. Some of the
topics here are also discussed in the surveys [21, 47, 19, 14].

These notes are organized as follows. The rest of this section defines graded
free resolutions and introduces some Lie algebras associated with a discrete group,
in this case the fundamental group of an arrangement complement.

Section §2 considers free resolutions over the arrangement’s cohomology ring.
If M is the complement of n hyperplanes in C`, let A = H•(M,Q). We recall
a “classical” interpretation of the linear strand of the resolution of the trivial
A-module in terms of the lower central series of the fundamental group. Both
can be understood in combinatorial term in two interesting cases: when A is a
Koszul algebra (§2.1) and, more recently, for decomposable arrangements (§2.2).
Beyond the linear strand, one encounters the homotopy Lie algebra. Roos [39]
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has recently provided examples of arrangements for which this Lie algebra is not
finitely generated, and for which its Hilbert series is transcendental (§2.3).

Section §3 focusses on resolutions over an exterior algebra. This is a more
recent inquiry that begins with work in [41, 18, 42]. Via a standard linear in-
clusion of an arrangement complement in a torus T = (C∗)n, the exterior algebra
E = H•(T,Q) acts on A and its vector space dual, A∗ = H•(M,Q). The homology
of the arrangement complement, A∗, has a remarkable property: its free resolu-
tion as an E-module is linear (§3.3). We see this provides a link with resonance
and cohomology of local systems on arrangement complements, which ties in this
second topic with the lectures notes of Falk [19] and Dimca-Yuzvinsky[14].

1.1. Free resolutions

Let k be a field, and let R be a Noetherian k-algebra, graded by the natural
numbers. Let |x| denote the degree of a homogeneous element x ∈ R. The algebra R
is graded-commutative if xy = (−1)|x||y|yx for all homogeneous elements x, y ∈ R.
If M is a finitely-generated, graded left R-module, for j ∈ Z, let M(j) denote the
module with degrees shifted down by j: that is, M(j)i = Mi+j , for all i ∈ Z. A
graded free resolution of M is a resolution (F•, ∂) by graded, free modules in which
the differential ∂ has degree 0. One can write such a resolution as follows:

0 Moo
⊕

j R(−j)b0joo
⊕

j R(−j)b1j · · ·∂1oo
⊕

j R(−j)bij
∂ioo · · ·∂i+1oo

for some integers {bij : i, j ∈ Z}. The resolution is minimal if the entries of each
∂i are contained in the maximal homogeneous ideal R+ =

⊕
j>0 Rj . In this case,

the number b0j is just the number of generators of M in degree j in a minimal
generating set. Minimal resolutions exist, but they are not unique. However, the
numbers {bij : i ≥ 0, j ∈ Z} are the same for every minimal resolution of a module
M , and are called the bigraded Betti numbers of M . Let

P (M, s, t) =
∑

i≥0,j

bijs
itj , (1.1)

the Poincaré-Betti polynomial of M . Computing the Euler characteristic of the
resolution in each degree gives an expression for the Hilbert series of M :

H(M, t)/H(R, t) = P (M,−1, t). (1.2)

Suppose (F•, ∂) is a minimal resolution of M . Since k = R/R+, we get

k⊗R F• =
⊕

j

(
k(−j)b0j

⊕
j k(−j)b1j · · ·0oo

⊕
j k(−j)bij0oo · · ·0oo

)
,

where the differential is zero. In homology, then, dimk TorR
i (k,M)j = bij , for all

i, j. Similarly, dimk Exti
R(M,k)−j = dimk HomR(Fi,k)−j = bij for all i, j.

Suppose that R(−j) is a summand of Fi, for some j, i > 0. Then since R
is nonnegatively graded, its image ∂i(R(−j)) in Fi−1 is contained in summands
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R(−j′), where j′ < j. It follows that, for any strictly increasing sequence of integers
c0 < c1 < c2 < · · · , the differential in F• restricts to the subcomplex

⊕
j≤c0

R(−j)b0j
⊕

j≤c1

R(−j)b1joo · · ·oo ⊕
j≤ci

R(−j)bijoo · · ·oo
.

Definition 1.1. If F• is a minimal resolution of M , let d0 be the smallest degree of
a generator of M . Since b0j = 0 for j < d0, the smallest nonzero subcomplex of
the form above occurs using the sequence ci = d0 + i for i ≥ 0. This subcomplex
is called the linear strand of F•. If a minimal resolution F• is equal to its linear
strand, it is called a linear resolution.

Notice that, if a left module M has a linear resolution, then its Hilbert series
determines the Betti numbers in its resolution: from (1.2),

H(M, t)/H(R, t) = P (M,−1, t)

= (−t)d0
∑

i≥0

bi,d0+i(−t)i. (1.3)

1.2. Fundamental groups and the lower central series

From this point onward, we will take our scalars to be the field Q. Let A =
{H1,H2, . . . , Hn} be a central arrangement in C`, and let M = M(A) = C` −⋃

H∈AH denote the complement of the hyperplanes in affine space. Let G(A) =
π1(M) denote its fundamental group. Such groups have been of interest since the
’60s: in particular, if A is the set of reflecting hyperplanes of a reflection group,
then G(A) is a (generalized) pure braid group [8, 22]. A modern survey may be
found in [44].

For any group G, let G(1) = G and G(i) = [G,G(i−1)] for i ≥ 1, the lower
central series of G. The quotient G(i)/G(i+1) is abelian, and their sum

grQG =
⊕

i≥1

(G(i)/G(i+1))⊗Z Q (1.4)

forms a Lie algebra over Q with bracket imposed by the commutator in G, called
the rational lower central series Lie algebra of G.

One should regard the Lie algebra grQG as being a simplified approxima-
tion to G. Let G′′ = [G′, G′], the second derived subgroup of G. The maximal
metabelian quotient, G/G′′, is another approximation of the group G. Its lower
central series ranks were first considered by Chen [9]. Its lower central series Lie
algebra, grQ(G/G′′), is called the (rational) Chen Lie algebra of G: for a modern
treatment, see [32].

Returning to the case where G is the fundamental group of a hyperplane
complement M(A), we will call these the LCS and Chen Lie algebras of A, respec-
tively.
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1.3. A third Lie algebra

Now let X be a finite-type CW complex. Dualizing the cohomology product
∪ : H1(X,Q)⊗H1(X,Q) → H2(X,Q) gives a map

∪∗ : H2(X,Q) → H1(X,Q)⊗H1(X,Q). (1.5)

Let V = H1(X,Q). Since ∪ is skew-commutative, for any z ∈ H2(X,Q),

∪∗(z) =
∑

i

xi ⊗ yi − yi ⊗ xi,

for some elements {xi} , {yi} of V . One can use the image of ∪∗ to make a (non-
commutative) algebra generated by the vector space V : let

U = T(V )/(im(∪∗)), (1.6)

the quotient of the tensor algebra on V by the two-sided ideal generated by the
image of ∪∗. Let [x, y] = x ⊗ y − y ⊗ x for x, y ∈ V . Then since its relations are
generated by brackets, U is the universal enveloping algebra of the Lie algebra
generated by V . This Lie algebra, denoted by h(X), is called the holonomy Lie
algebra of X, introduced in [10]. We will write U = U(h(X)). If the space X is
understood, we will write h in place of h(X).

More precisely, we define an algebra homomorphism∇ : U → U⊗U by letting
∇(x) = x⊗1+1⊗x for x ∈ V , and extending it multiplicatively. An element x ∈ U
is primitive if ∇(x) = x⊗1+1⊗x. Let PU denote the set of primitive elements of
U . It is not hard to check that PU is closed under the bracket operation, so PU is
a Lie algebra. We define h(X) = PU . (This is an instance of a more general fact:
U has the structure of a cocommutative Hopf algebra over Q with coproduct ∇. In
such a situation, U is always the enveloping algebra of its Lie algebra of primitive
elements: see [30, 4])

In the case of hyperplane arrangement complements, h(A) = h(M(A)) is
called the holonomy Lie algebra of A. Recall that the cohomology algebra of the
complement M(A) has a combinatorial presentation as the Orlik-Solomon algebra,
A = E/I, where E is an exterior algebra on n generators, and I an ideal of relations
indexed by circuits.

Let V ∗ = A1, a Q-vector space with basis {eH : H ∈ A}. Let {fH : H ∈ A}
be the dual basis in V . Kohno [26] showed that

h(A) =
〈
fH : H ∈ A

∣∣∣
[
fH ,

∑

H′ : H′<X

fH′
]
: H ∈ A, X ∈ L2(A),H < X

〉
. (1.7)

In particular, the holonomy Lie algebra depends only on Ai for i = 0, 1, 2, which
is to say that it is determined completely by the number of hyperplanes and their
codimension-2 intersections.

Example 1. Let A be an arrangement of n lines through the origin in C2. Then
A = E/I, where I = ((eiej − eiek + ejek) : 1 ≤ i < j < k ≤ n). We can
identify A2 with V ∗ ⊗ V ∗/W , where W is the subspace generated by the ele-
ments ei ⊗ ej + ej ⊗ ei and ei ⊗ ej − ei ⊗ ek + ej ⊗ ek for all i, j, k. Then the
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cup product A1 ⊗ A1 → A2 is the quotient map, and the image of its dual is
W⊥ = {g ∈ V ⊗ V : g(x) = 0 for all x ∈ W}. In this case, it can be checked di-
rectly that the elements

[
fi,

∑n
j=1 fj

]
span W⊥, for 1 ≤ i ≤ n, which recovers the

presentation of h(A) for this arrangement given by (1.7).

1.4. Relating the Lie algebras

The example above motivates a key observation due to Shelton and Yuzvinsky [43],
for which we need another definition.

Definition 1.2. Suppose B is a nonnegatively graded Q-algebra, finitely generated
in degree 1, and not necessarily graded-commutative. Let V = B1, a Q-vector
space. Then B ∼= T(V )/R, for some ideal of relations R. Let W = R2, a subspace
of V ⊗ V . The quadratic dual of B is, by definition, the graded algebra

B! = T(V ∗)/(W⊥). (1.8)

Clearly, quadratic duality is an involution: (B!)! ∼= B. By reviewing the
construction (1.6) carefully, one obtains the following.

Proposition 1.3 ([43]). For any arrangement A, we have U(h(A)) ∼= A!.

On the other hand, the fundamental group G = G(A) of an arrangement
is 1-formal (in the sense of Sullivan [45]), from which it follows that grQ(G) ∼=
h(A) as Lie algebras [26]. As an application, we could try to understand the LCS
ranks, φi = rank(G(i)/G(i+1)), for i ≥ 1. According to the Poincaré-Birkhoff-Witt
Theorem, the associated graded algebra of an enveloping algebra U(g) (under the
bracket-length filtration) is a polynomial algebra. In particular, the Hilbert series
of U(g) is the same as that of the polynomial algebra Q[g].

Since h ∼= grQ(G) has φi generators of degree i, we obtain the formula

H(U(h), t) =
∏

i≥1

(1− ti)−φi . (1.9)

Understanding the LCS ranks {φi}, then, is equivalent to knowing the Hilbert
series of the quadratic dual A! of the Orlik-Solomon algebra. However, finding an
explicit description is an open problem except for special classes of arrangements,
as we see below.

Example 1 (continued). Continuing the example of n lines in C2, one can see
that the element z :=

∑n
j=1 fi is central in h(A), and its quotient is just the

free Lie algebra on n − 1 generators, which we will call fn−1. The quotient is
(noncanonically) split, so h ∼= fn−1 × f1.

On the level of enveloping algebras, U(h) is isomorphic to the tensor product
of a tensor algebra with n − 1 generators with a polynomial algebra Q[z]. From
(1.9), then ∏

i≥1

(1− ti)−φi =
1

(1− (n− 1)t)(1− t)
(1.10)

by multiplying the Hilbert series of the tensor algebra with that of the one-variable
polynomial algebra.
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2. Resolutions over the Orlik-Solomon algebra

We first outline some known results about free resolutions over the Orlik-Solomon
algebra. We use [7] in particular as a reference for multiplicative structures in
homological algebra. Consider the module A0 = Q, on which the positive degree
part of A acts trivially. Recall that the Yoneda product makes the Ext groups
Ext•A(Q,Q) into a Q-algebra, graded by cohomological degree. The grading from
A induces a second grading on the algebra with Extp

A(Q,Q)q = 0 unless q ≤ −p.
For convenience, we let

Extp
A(Q,Q)(r) = Extp

A(Q,Q)−p−r (2.1)

for r ≥ 0, so that Ext•A(Q,Q) is nonnegatively graded, and Ext•A(Q,Q)(0) is a sub-
algebra of Ext•A(Q,Q). Note that dimQ Exti

A(Q,Q)(0) = bii, the ith Betti number
of the linear strand of a minimal free resolution of Q over A.

Löfwall [28] showed that Ext•A(Q,Q)(0) ∼= A! as algebras. Taking Hilbert
series via (1.9), then, we get

∑

i≥0

biit
i =

∏

i≥1

(1− ti)−φi , (2.2)

which appeared in [36].

2.1. Koszul algebras

This leads to a definition.

Definition 2.1. A nonnegatively graded Q-algebra B is Koszul if Ext•B(Q,Q)(0) =
Ext•B(Q,Q).

There are numerous equivalent formulations: for detail and a more general
treatment see [5, 23, 37]. From the discussion above, though, B being Koszul is
equivalent to having the inclusion be an isomorphism B! ∼= ExtB(Q,Q), as well as
to the trivial module Q having a linear resolution. An important consequence (see
(1.3)) is that

H(B, t) ·H(B!,−t) = H(Q, t) = 1. (2.3)

It follows that a Koszul algebra must be quadratic: that is, expressible as a
quotient of a polynomial algebra by an ideal of relations generated in degree 2. This
is a sufficient condition in the case that the ideal is generated by monomials [1],
but in general it is difficult to decide if a given algebra is Koszul. A useful test is
the following. An algebra B is Koszul if its ideal of relations possesses a quadratic
Gröbner basis (also from [1]; see [23] for further discussion.)

The Koszul property has an interpretation in terms of rational homotopy
theory, due to Papadima and Yuzvinsky [35]:

Theorem 2.2 ([35]). If X is a connected, finite-type formal space, then H•(X,Q)
is Koszul if and only if the rational completion XQ is an Eilenberg-Maclane space.



Homological aspects of hyperplane arrangements 7

In the case of Orlik-Solomon algebras, Björner and Ziegler [6] showed that
A(A) possesses a quadratic Gröbner basis if and only if A is a supersolvable
arrangement. This leads to the following beautiful result:

Theorem 2.3 ([20]). If A is a supersolvable arrangement of rank `, then the lower
central series ranks are given by the formula

∏

i≥1

(1− ti)−φi = π(A,−t)−1,

where π(A, t) is the Poincaré polynomial of the arrangement.

Furthermore, the Poincaré polynomial of a supersolvable arrangement is
known to factor as π(A, t) = (1 + m1t)(1 + m2t) · · · (1 + m`t) for certain com-
binatorially significant positive integers {mi}, which makes the right-hand side of
the identity above more attractive: see [31].

Proof. If A is supersolvable, the Orlik-Solomon algebra is Koszul, by the remark
above. The LCS ranks are given by (2.2); using the Koszul property via (2.3), this
generating function equals H(A,−t)−1. The argument is completed by recalling
that the Poincaré polynomial is the Hilbert series of the Orlik-Solomon algebra. ¤

Remark 2.4. Kohno [27] first established the LCS formula above for reflection
arrangements of type A`. Falk and Randell [20] extended the formula to a class
they called fiber-type arrangements, which Terao [46] found was the same as the
supersolvable arrangements.

Problem 2.5. Examples of Koszul algebras defined by ideals that do not possess
a quadratic Gröbner basis are known: see, for example, [40]. However, no such
examples of Orlik-Solomon algebras are known. That is, if A is an arrangement
for which A(A) is Koszul, must A be supersolvable?

2.2. Decomposable arrangements

Papadima and Suciu [34] identified another class of arrangements for which the
linear strand of a minimal free resolution has a nice structure, generalizing results
of Schenck and Suciu [41]. The decomposable arrangements, defined below, are
generally not Koszul, but they too have a LCS formula similar to that of Theo-
rem 2.3.

For each subspace X ∈ L2(A), write hX = h(AX). This is the holonomy
Lie algebra of a rank-2 arrangement, which we saw in Example 1. The natural
projections πX : h(A) → hX assemble to give a map

π : h →
⊕

X∈L2(A)

hX .

Holonomy Lie algebras are graded by bracket length, so h′ = h≥2. The restriction

π′ : h′ →
⊕

X∈L2(A)

h′X (2.4)
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is always surjective. The arrangement A is decomposable if the map (2.4) is an
isomorphism. It is not hard to check that the degree-2 part, π2, is always an
isomorphism of vector spaces, but in general π′ has a nonzero kernel in degrees 3
and higher.

A salient feature of this family of arrangements is an effective test for mem-
bership. Papadima and Suciu show that, remarkably, π′ is an isomorphism if and
only if π3 is an isomorphism. [34, Theorem 2.4] Accordingly, one can decide if
an arrangement is decomposable by counting dimensions in (2.4). Based on our
calculations in Example 1, if X is a rank-2 flat, then h′X = f′m−1, where m = |AX |.
By expanding (1.10), one can compute that dimQ(hX)3 = m(2 − 3m + m2)/3.
Similarly, by expanding the generating function (1.9),

dimQ h3 =
1
3
(3b33 − 3b11b22 + b3

11 − b11).

So A is decomposable if and only if

3b33 − 3b11b22 + b3
11 − b11 =

∑

X∈L2(A)

mX(2− 3mX + m2
X), (2.5)

where mX = |AX |.
Since for decomposable arrangements h′ is known explicitly, so is a generating

function for the lower central series ranks of the fundamental group:

Theorem 2.6 ([34]). If A is a decomposable arrangement, the lower central series
ranks of π1(M(A)) are given by the formula

∏

i≥1

(1− ti)−φi = (1− t)m−n
∏

X∈L2(A)

(1− (mX − 1)t)−1,

where n is the number of hyperplanes, mX = |AX |, and m =
∑

X∈L2(A)(mX − 1).

Example 2. The arrangement X3 defined by Q = xyz(x+y)(x+z)(y+z) has three
triple points, so the right-hand side of (2.5) equals 18. By a computer calculation
with Macaulay 2 [25], the first few Betti numbers of ExtA(Q,Q) are

0: 1 6 24 80 240
1: . . 1 12 84
2: . . . . 1

Here we use Macaulay 2 notation: that is, b11 = 6, b22 = 24, b33 = 80, and so on.
The left side of (2.5) equals 18 as well, which means X3 is decomposable. By

Theorem 2.6 and (2.2), the Betti numbers of the linear strand above are given by
the generating function (1− 2t)−3.

2.3. The homotopy Lie algebra

Above, we saw that an isomorphism ExtA(Q,Q)(0) ∼= U(h) relates the linear strand
of a free resolution to the holonomy Lie algebra, and this was particularly satisfac-
tory when A is Koszul. More generally, If B is any graded-commutative Q-algebra,
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then ExtB(Q,Q) is a cocommutative Hopf alegebra, which means the primitive el-
ements P ExtB(Q,Q) form a graded Lie algebra, called the homotopy Lie algebra
of B.

For an arrangement A, let

g = g(A) = P ExtA(Q,Q),

which we will call the homotopy Lie algebra of the arrangement A. Then h = g(0):
the holonomy Lie algebra is the degree-0 subalgebra of g. The Lie algebra g is
bigraded, and it should be mentioned that g is not a Lie algebra in the classical
sense, but rather a “graded Lie algebra” or Lie superalgebra. This is to say that,
for homogeneous elements x ∈ g(p) and y ∈ g(q), the bracket satisfies

[x, y] = −(−1)pq[y, x],

and the Jacobi identity is replaced by

(−1)pr[x, [y, z]] + (−1)pq[y, [z, x]] + (−1)qr[z, [x, y]] = 0

where, in addition, z ∈ g(r). Here, we are using the fact that the cohomology ring
A is generated in degree 1: the signs in the general case are explained, for example,
in [4].

If we let φij = dimQ gi,(j) for i, j ≥ 0, then φi0 = φi, and the graded version
of (1.9) reads

PA(Q, st−1, t) = H(U(g), s, t) =
∏

i,j≥0

(1 + sit2j+1)φi,(2j+1)

(1− sit2j)φi,(2j)
, (2.6)

using (2.1).
Compared to the holonomy Lie algebra, little is known about the homo-

topy Lie algebra of an arrangement. On the positive side, the structure of g(A) is
described in [12] for arrangements obtained by intersecting supersolvable arrange-
ments with certain linear subspaces. The resulting arrangements – a subclass of the
hypersolvable arrangements – have a cohomology ring which is a Golod quotient
of a Koszul algebra. We refer to [12] for details.

On the other hand, Roos [39] has shown that, for certain arrangements, g(A)
is badly behaved in two ways. First, g(A) need not be finitely generated. In par-
ticular, g(X3) is not finitely generated. (Recall that we saw in Example 2 that
the X3 arrangement is decomposable, and so its holonomy Lie algebra is certainly
finitely-generated.) Roos also has shown that the bigraded Hilbert series (2.6) need
not be a rational function:

Example 3 ([39]). The arrangement of 8 hyperplanes in C3 defined by Q = xyz(x−
y)(x−z)(y+z)(2x−y−z)(x−2y−z) has a transcendental Hilbert series PA(Q, s, t).
The Betti numbers of the linear strand are given by

H(U(h), t) =
( 1− t

1− 2t

)7 ∏

i≥3

(1− ti)−1.
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3. Part II: Resolutions over the exterior algebra

Some interesting, related free resolutions can be obtained by comparing a hyper-
plane complement with a torus, as follows. IfA is an arrangement of n hyperplanes,
its complement M can be regarded as the intersection of the torus T = (C∗)n with
a linear subspace of Cn. Identify H∗(T,Q) with the exterior algebra E = Λ(V ).
Then the inclusion i : M ↪→ T induces a surjection in cohomology, i∗ : E → A,
which is intrinsic to the combinatorics of the Orlik-Solomon algebra: see [14] in
this volume.

This leads to some homological algebra over E. In this section, we will con-
sider resolutions of A = H•(M,Q) and its dual A∗ = H•(M,Q). By means of
a beautiful theorem of Eisenbud, Popescu and Yuzvinsky [18], it turns out that
these resolutions are closely related to the phenomenon of resonance discussed in
Falk’s survey [19].

3.1. The resolution of A over the exterior algebra

We begin with a fairly simple but illustrative example.

Example 4. For the X3 arrangement, the first few Betti numbers of TorE(Q, A),
or equivalently of ExtE(A,Q), are

0: 1 . . . . . .
1: . 3 6 9 12 15 18
2: . 1 9 33 85 180 336

Certainly A does not possess a linear free resolution over E. However, there appear
to be only two nonzero (interesting) rows: in other words, bij = 0 for j > i + 2.
This reflects the fact that the Castelnuovo-Mumford regularity of A over E is at
most `− 1; that is, for any arrangement of rank `, we have dimQ TorE

i (A,Q)j = 0
for j ≥ i + `. (See [3, Lemma 2.5].) From the diagram, it also seems to be the
case that bi,i+1 = 3i. We will see why in the continuation of this example. These
numbers have a topological interpretation, given in Theorem 3.1, below.

Recall that the Lie algebra h′ = h≥2 inherits the bracket-length grading of
h; therefore the quotient h′/h′′ does as well. A result of Fröberg and Löfwall [24,
Theorem 4.1(ii)] applies to show

ExtE(A,Q)(1) ∼= h′/h′′

as a graded S-module, where S = U(h/h′) = ExtE(Q,Q). Then dimQ(h′/h′′)i =
dimQ(h/h′′)i+1 for i ≥ 1, where h/h′′ is the maximal metabelian quotient of the
holonomy Lie algebra. That is, the first row of Betti numbers in the resolution of
A can be regarded as the LCS ranks of a Lie algebra.

Once again, the 1-formality of arrangement groups makes it possible to in-
terpret this topologically. Papadima and Suciu show in [32] that, if G is 1-formal,
then the lower central series Lie algebra grQ(G/G′′) is isomorphic to h/h′′. For any
arrangement A, then, let G = π1(M(A)), and for i ≥ 1 let θi = dimQ(gri(G/G′′)),
the Chen ranks. In [42], Schenck and Suciu prove the following:
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Theorem 3.1 ([42]). For all i ≥ 2, θi = bi−1,i, where (bij) are the Betti numbers
in the resolution of the Orlik-Solomon alegebra A(A) over E.

The proof in [42] is direct, using BGG duality to identify ExtE(A,Q)(1) as
being a linearization of the Alexander invariant. This brings resonance into play,
and we will return to this point in §3.4.

A combinatorial description even of the sublinear strand bi−1,i is unknown in
general, but nice formulas exist for two special cases. The first is for decomposable
arrangements, which were characterized by an isomorphism (2.4). In this case,

h′/h′′ ∼=
⊕

X∈L2(A)

h′X/h′′X ,

from [34, Theorem 6.2], so

θk =
∑

X∈L2(A)

(k − 1)
(|X|+ k − 3

k

)
(3.1)

for k ≥ 2, by reducing to Chen’s calculation [9] for free groups.

Example 4 (continued). We saw that the X3 arrangement is decomposable. The
only nonzero terms in (3.1) are contributed by the three triple points, so for k ≥ 1,
the sum (3.1) simplifies to

bk,k+1 = θk+1 = 3k,

as expected.

The second case is that of graphic arrangements. If Γ is a graph with m
vertices, then A(Γ) is defined to be the arrangement in Cm with one hyperplane
for each edge: {zi − zj = 0: {i, j} ∈ E(Γ)}. Then by [41, Lemma 6.9],

bk,k+1 = k(κ2 + κ3) (3.2)

for all k ≥ 2, where κs denotes the number of complete subgraphs in Γ with s + 1
vertices. We refer to [41] for further explicit computations of the Betti numbers in
this resolution and that of Q over A, which depend on some intricate combinatorics
in the change of rings spectral sequence.

Problem 3.2. Give a direct, combinatorial interpretation of the integers dimQ TorE
i (A,Q)j

using the intersection lattice L(A), for arbitrary i and j.

3.2. Homology of an arrangement complement

Let E∗ denote the Q-dual of E. By the universal coefficients theorem, E∗ ∼=
H•(T,Q). In homology, then, we have an inclusion (of coalgebras)

i∗ : H•(M,Q) ↪→ H•(T,Q) ∼= E∗. (3.3)

However, since the torus is an H-space, E∗ is also an algebra: the exterior
algebra on V ∗. Let {ei : Hi ∈ A} denote the standard basis of V , identifying it
with H1(M,Q). Let {e∗i : Hi ∈ A} be the dual basis.
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Poincaré duality in the torus amounts to the following in the exterior algebra.
Fix an ordered basis of V , or, equivalently, a choice of isomorphism det : En

∼= Q.
Then, for each p, there is a vector space isomorphism φ : Ep → (E∗)n−p given by

φ(x)(y) = det(xy). (3.4)

Then, for all p, 0 ≤ −p ≤ n,

A∗p = HomQ(A,Q)p

∼= HomE(A, E)n+p by (3.4),
∼= (ann I)n+p, (3.5)

where ann I denotes the annihilator ideal to the defining ideal I of the Orlik-
Solomon algebra.

3.3. The resolution of A∗ over the exterior algebra

Recall from [14, Section 2] that the ideal I is generated by elements ∂(eS), where
the monomial eS is indexed by a circuit: that is, a minimal dependent set of
hyperplanes. With respect to the graded-lexicographic order, the leading monomial
in ∂(eS) is eS′ , where, if i is the least index in S, then S′ = S − {i}.

Additively, the initial ideal in(I) = Q {eT : T contains a broken circuit}.
The following construction captures the combinatorial nature of squarefree

monomial ideals. As before let E be an exterior algebra with generators {e1, e2, . . . , en}.
Let R be the polynomial algebra Q[x1, x2, . . . , xn].

Definition 3.3. Let ∆ be an abstract simplicial complex with vertices [n] = {1, 2, . . . , n}.
The ideals I∆ and J∆ of R and E, respectively,

J∆ = (xS ∈ R : S 6∈ ∆) and I∆ = (eS ∈ E : S 6∈ ∆)

are the symmetric and exterior Stanley-Reisner ideals of ∆.

Definition 3.4. Let ∆ be a simplicial complex on vertices [n] which is not the n−1
simplex. The combinatorial Alexander dual, ∆?, is by definition the simplicial
complex whose simplices are the complements of the nonsimplices of ∆:

∆? = {σ ⊆ [n] : [n]− σ 6∈ ∆} ,

It is straightforward to check that, for any ∆, we have

ann I∆ = I∆? . (3.6)

For a fixed choice of arrangement and an order on its hyperplanes, the sets

nbc = {S ⊂ [n] : S does not contain a broken circuit}
form a simplicial complex called the broken circuit complex (see [6].) From the
discussion above, we see in(I) = Inbc.

Lemma 3.5. For any homogeneous ideal I in E, we have in(ann(I)) = ann(in(I)).
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Proof. If x ∈ ann(I) is a homogeneous element, let eS be its initial monomial.
Replacing x by a nonzero scalar multiple, we get x = eS +x′, where x′ is supported
on monomials eS′ for which eS > eS′ in the term order. Then for any homogeneous
y ∈ I, we may similarly write a multiple of y as y = eT +y′, where eT is the leading
term of y. Since eSeT is the leading monomial in xy, it must in fact be zero, since
xy = 0. This shows in(ann(I)) ⊆ ann(in(I)).

Equality is established by checking that the Hilbert series of the two sides
agree:

H(in(ann(I)), t) = H(ann(I), t)

= (1 + t)n − tnH(I, t−1) by (3.5);

= (1 + t)n − tnH(in(I), t−1)

= H(ann(in(I)), t)

¤

Theorem 3.6 ([18]). For any arrangement, A∗ has a linear, minimal free resolution

0 A∗oo E(`)b0,−`oo E(`− 1)b1,1−` · · ·oo E(`− k)bk,k−`oo · · ·oo

Sketch of proof: The first step is to reduce the problem to a one of monomial ideals.
Let us ignore degree shifts and replace A∗ by ann I (using (3.5)). By Lemma 3.5 and
(3.6), in(ann I) = Inbc? , since in(I) = Inbc. If we could show that the monomial
ideal Inbc? has a linear resolution, then we would be done: the Gröbner deformation
to the initial ideal is upper semicontinuous, so in particular if the initial ideal of
ann(I) has a linear resolution, then so does ann(I).

It follows from a result of Aramova, Avramov, and Herzog [2] that a mono-
mial ideal I∆ in the exterior algebra has a linear resolution if and only if the
corresponding squarefree monomial ideal J∆ in the polynomial algebra R has a
linear resolution. Such ideals have been studied extensively; in particular, Eagon
and Reiner [15] show that J∆ has a linear resolution if and only if the Stanley-
Reisner ideal J∆? of the Alexander dual complex is Cohen-Macaulay.

Since Alexander duality is an involution, it is enough to know that the ideal
Jnbc is Cohen-Macaulay. This amounts to a combinatorial condition on the sim-
plicial complex; see [15] for details. The broken-circuit complex nbc is known to
be shellable [38], a classical combinatorial property which implies Jnbc is Cohen-
Macaulay. ¤

Then the Betti numbers of the resolution are given by (1.3):
∑

i≥0

bi,i−`t
i = (−t)`H(A∗,−t)/H(E,−t)

= (−t)`π(A, (−t)−1)/(1− t)n

= χ(A, t)/(1− t)n,

where χ(A, t) denotes the characteristic polynomial of the arrangement.
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3.4. Koszul modules

The definition of the quadratic dual of an algebra (1.8) admits a generalization
to modules. Suppose B is a nonnegatively graded Q-algebra and M is a finitely-
generated left B-module, generated in degree 0. Once again, let n = dimQB1, let
V = B1, and suppose further that M has a linear presentation M = coker f : Bk →
Bm. Since f is given by a matrix with entries in B1, it is determined by its degree-
zero part, which is just a map of vector spaces f0 : Qk → V ⊗Qm.

Then we define M !
B to be the left B!-module given by the following linear

presentation. Let f⊥0 : Qmn−k → V ∗⊗Qm be a Q-linear map onto the complement
of the image of f0. Define a map f ! : (B!)mn−k → (B!)m by letting it act in degree
zero by f⊥0 , and extending by the left action of B!. Set

M !
B = coker f ! : (B!)mn−k → (B!)m. (3.7)

As in the case of algebras, the quadratic dual of a module can be understood
in terms of resolutions. Let B be a Koszul algebra. If M is a left B-module, then
the Yoneda product makes ExtB(M,Q) a left B!-module, since B! = ExtB(Q,Q).
If {bij} denote as usual the Betti numbers in the minimal free resolution of M ,
then

bij = dimQ Exti
B(M,Q)−j ,

for all i, j ≥ 0. The submodule of ExtB(M,Q) corresponding to the linear strand
turns out to be isomorphic to the quadratic dual of M : that is,

ExtB(M,Q)(0) ∼= M !
B

as left B!-modules. If the module M has a linear free resolution, we have:

ExtB(M,Q) = ExtB(M,Q)(0) ∼= M !
B .

In this case, M is called a Koszul module. It is not hard to check that quadratic
duality for modules is an involution, which has the following good consequence.

Proposition 3.7 ([37]). If B is a Koszul algebra, then M is a Koszul B-module if
and only if M !

B is a Koszul B!-module.

That is, if M has a linear resolution, so does M !
B . Additively, for p ≥ 0,

the pth term in the resolution of M !
B is (M∗)−p ⊗Q B!(−p). In this language,

Theorem 3.6 says that, for any arrangement, A∗(−`) is a Koszul E-module. Let
F (A) = ExtS(A∗(−`),Q), its quadratic dual R-module. By Proposition above,
F (A) is a Koszul R-module. Since F (A)!S ∼= A∗(−`), the module F (A) has a
linear resolution of the form

0 F (A)oo A` ⊗ Soo A`−1 ⊗ S(−1) · · ·oo A0 ⊗ S(−`)oo 0oo (3.8)

via the identification A∗(−`)∗−p
∼= A`−p. It turns out that the differential is given

by

e⊗ x 7→
n∑

i=1

eei ⊗ xix,

where {xi} is the dual basis to the basis {ei} of A1.
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We note that the module F (A) and its resolution (3.8) are originally in-
troduced in [18] by means of Bernstein-Gelfand-Gelfand duality, as developed in
Eisenbud-Fløystad-Schreyer [17] and explained in [16, Chapter 7]. BGG duality
makes use of the special properties of the Koszul dual rings E and S; in particu-
lar, since F (A) has a linear resolution, it implies the following:

Proposition 3.8. For all j, there is an isomorphism of graded S-modules

Ext`−j
S (F (A), S) ∼= ExtE(A,Q)(j).

In particular, for each fixed j, the Betti numbers bi,i+j in the resolution of
A can be interpreted as the Hilbert series of an S-module, Ext`−j

S (F (A), S). With
this in mind, Schenck and Suciu [42] proved Theorem 3.1 by understanding the S-
module Ext`−1

S (F (A), S) as the linearized Alexander invariant (see [29], and more
recently, [32, 33].)

3.5. Resonance

In Falk’s lecture notes in this volume [19], he defines the resonance varieties of an
arrangement, for p ≥ 1, as

Rp(A) =
{
a ∈ A1 − {0} : Hp(A, a) 6= 0

}
, (3.9)

where (A, a) denotes the projective Orlik-Solomon algebra of A over C, regarded
as a cochain complex with a differential given by (right) multiplication by the
element a. Since each Rp(A) is invariant under multiplication by C∗, the orbits
form a projective variety PRp(A) in Pn−2.

We need to make a slight translation to fit the notation here. Recall from
[19] that the derivation ∂ : E → E defined by ∂(ei) = 1 induces a well-defined
differential on the Orlik-Solomon algebra; moreover, the chain complex (A•, ∂) is
exact, and one may identify A with ker ∂ (or, equivalently, im(∂).) A more general
and geometric discussion may be found in [13].

If a =
∑n

i=1 aiei, then ∂(a) =
∑n

i=1 ai, so A1 = {a ∈ A1 :
∑n

i=1 ai = 0}.
It is straightforward to check that the map (∂a + a∂) : A → A is multiplication
by

∑n
i=1 ai. Reading this as a chain homotopy on the cochain complex (A, a),

multiplication by
∑n

i=1 ai is an isomorphism (over C) unless this sum is zero, so
(A, a) is exact unless a ∈ A1. On the other hand, it also says ∂ is a chain map
provided a ∈ A1 which, together with exactness of ∂, gives a short exact sequence
of chain complexes

0 // (A, a) // (A, a) ∂ // // (A, a)[−1] // 0.

Multiplication by any a′ ∈ A1 with ∂(a′) 6= 0 gives a section, so the long exact
sequence breaks up, and

Hp(A, a) =

{
Hp(A, a)⊕Hp−1(A, a) for a ∈ A1;
0 otherwise

for all p.
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This means that we can look at resonance varieties using the resolution (3.8).
The differential in the complex (3.8) is multiplication by the element ω =

∑n
i=1 ei⊗

xi ∈ A1 ⊗ S1, which we can specialize to the differential in any complex (A, a).
Formally, for a ∈ A1, define a homomorphism S → Q by xi 7→ ai for 1 ≤ i ≤ n.
Let Qa denote Q, regarded as a S-module in this way. Then, as a consequence of
Theorem 3.6,

Proposition 3.9. For all 0 ≤ i ≤ `,

Hp(A, a) = TorS
`−p(F (A),Qa).

There is also a projective version of the module F (A): we simply let S =
S/(

∑n
i=1 xi), and define

F (A) = F (A)⊗S S.

Then, by a modification of the same argument, F (A) has a linear resolution over
S:

0 F (A)oo A`−1 ⊗ Soo A`−2 ⊗ S(−1) · · ·oo A0 ⊗ S(−` + 1)oo 0oo

(3.10)
with differential given by multiplying by the image of ω in A ⊗ S. As long as
∂(a) = 0, the action of R on Qa factors through S, and we obtain

Hp(A, a) = TorS
`−1−p(F (A),Qa).

Since nonvanishing Tor groups appear with consecutive homological indices, we
arrive at another corollary to Theorem 3.6, stated as [18, Theorem 4.1(ii)]:

Corollary 3.10. For any arrangement A of rank `, we have

∅ = R0(A) ⊆ R1(A) ⊆ R2(A) ⊆ · · · ⊆ R`−1(A) = A1.

As explained in [14], resonance is closely related to cohomology of local sys-
tems. This leads to a question:

Problem 3.11. If Lλ is a rank-one local system on the complement M of a rank `
hyperplane arrangement, is it necessarily the case that

Hi(M,Lλ) 6= 0 ⇒ Hi+1(M,Lλ) 6= 0

for all i < `? (From [14, Corollary 6.7], this follows from Corollary 3.10 for λ close
to the trivial representation 1.)

3.6. Resonance and Betti numbers

One can obtain the first resonance variety directly from the module F (A): Schenck
and Suciu [42] show that

R1(A) ∪ {0} = V (annExt`−1
S (F (A), S)), (3.11)

the subvariety of Cn defined by the vanishing of the annihilator ideal. A more
complicated relationship occurs for the higher resonance varieties: see [11].

We already saw that the components of the resonance varieties are linear [19,
Theorem 4.16], and the components of PR1(A) have empty intersections. Let hr
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denotes the number of components of PR1(A) of (projective) dimension r, for
r ≥ 0. Using (3.11), these numbers bound the Hilbert series of Ext`−1

S (F (A), S),
which is equivalent to the Betti numbers Exti

E(A,Q)(1) (Proposition 3.8), and
equivalent to the Chen ranks (Theorem 3.1). In the last formulation,

θk ≥ (k − 1)
∑

r≥1

hr

(
r + k − 1

k

)
(3.12)

for sufficiently large k.
The Chen Ranks Conjecture ([44, 42]) states that (3.12) is in fact an equality

for all sufficiently large k. It has been verified for graphic and decomposable ar-
rangements, by comparing the explicit calculations of the Chen ranks in (3.2) and
(3.1), respectively, with matching calculations of the resonance varieties. However,
the general case remains open and makes a good problem with which to conclude
these lecture notes:

Problem 3.12. Show that, for any arrangement A,

θk = (k − 1)
∑

r≥1

hr

(
r + k − 1

k

)
for k >> 0,

where hr is the number of components of PR1(A) of dimension r, and θk is the
rank of the kth lower central series quotient of G/G′′.
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