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Abstract. We explore the relationship between the duality properties of a space (and its

universal abelian cover), and the propagation properties of its characteristic and resonance

varieties. We apply the general theory to arrangements of linear and elliptic hyperplanes,
as well as toric complexes, right-angled Artin groups, and Bestvina–Brady groups.
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1. Introduction

1.1. Duality and abelian duality. Duality groups were introduced by Bieri and Eckmann
[BE73]: they are characterized by a cohomological vanishing condition less restrictive than
Poincaré duality, and they possess a more general isomorphism between homology and co-
homology of group representations. In this paper, we introduce an independent but related
notion which we call abelian duality and which, we see, explains some previously conjectural
behavior of the cohomology of abelian representations.

More precisely, let X be a connected, finite-type CW complex, with fundamental group
G. Following Bieri and Eckmann [BE73], we say X is a duality space of dimension n if
Hq(X,ZG) = 0 for q 6= n and Hn(X,ZG) is non-zero and torsion-free. By analogy, we say
X is an abelian duality space of dimension n if the analogous condition, with ZG replaced by
ZGab is satisfied. For such a space X, and with k a coefficient field, we prove the following: If
Hi(X,kρ) 6= 0, for some character ρ : G→ k∗, then Hj(X,kρ) 6= 0 for all i ≤ j ≤ n.
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1.2. Propagation and the EPY property. A similar qualitative phenomenon also appeared
in a paper of Eisenbud, Popescu and Yuzvinsky in [EPY03], who showed that the is that the
(depth 1) resonance varieties of complex hyperplane arrangement complements “propagate.”
This result followed from another cohomological vanishing property, this time involving the
cohomology ring itself. If X is a space as above and A = H.(X,k) is its cohomology ring,
we may regard A as a module over the exterior algebra E generated by V := H1(X,k). For
hyperplane complements, the salient vanishing property established in [EPY03] was that, up
to a degree shift, A admits a linear, injective resolution as a graded E-module. They express
this condition in the elegant terms of the BGG correspondence. In view of their paper, we will
say that a space X has the EPY property if its cohomology ring admits such a resolution.

Our main objective in this paper, then, is to develop the analogy between abelian duality
spaces and those spaces that possess the EPY property. We note that the same underlying
homological algebra allows us to deduce the propagation of jump loci: in the former case,
characteristic varieties propagate, and in the latter, the resonance varieties.

1.3. Examples and applications. Using our previous paper [DSY15], we show that comple-
ments of hyperplane arrangements are abelian duality spaces, in addition to having the EPY
property. We are also able to characterize which right-angled Artin groups are abelian duality
groups, thus extending the work of Brady, Jensen and Meier [BM01, JM05]. It turns out that
for right-angled Artin groups, the properties of being a duality group, being an abelian duality
group, and having the EPY property are all equivalent to the Cohen–Macaulay property for
the presentation’s flag complex.

By analyzing the behavior of the abelian duality property under fibrations, we find that the
Bestvina–Brady groups are also abelian duality groups if and only if they are duality groups,
in parallel with the analysis of Davis and Okun [DO12].

For the families of examples listed so far, the abelian duality and EPY properties appear
in conjunction with the classical duality property. We give examples to show that, in general,
the first two properties are independent. Examples of duality groups which are not abelian
duality groups are abundant, while examples with the latter but not the former property can
be contrived.

2. Jump loci and support loci

2.1. Algebraic preliminaries I. We begin by singling out some general commutative algebra
which we will use repeatedly. The reader may refer to [Eis95] for details. We will let k denote
a coefficient ring: unless specified otherwise, either k = Z or a field. Let R be a k-algebra
(usually assumed to be commutative and Noetherian), and let V = m-SpecR. We will use the
notational convention that, if C. is a chain complex, Ci := C−i for all i ∈ Z.

Although the next two lemmas are well-known to experts, for lack of a reference, we include
their proofs.

Lemma 2.1. If R is a commutative, local k-algebra, then for any finitely-generated R-module
N , we have TorRi (N, k) 6= 0 for 0 ≤ i ≤ pdR(N), and zero otherwise.

Proof. Set d = pdR(N). Finitely-generated projective modules over a local ring are free, by
Nakayama’s lemma, so N has a free resolution of length d (where we allow d =∞):

(1) 0 Noo F0
oo F1

oo · · ·oo Fdoo 0oo .

We may take this resolution to be minimal [Eis95, Corollary 19.5], in which case TorRi (N, k) ∼=
Fi ⊗R k. In particular, we see that TorRi (N, k) is nonzero precisely for 0 ≤ i ≤ d. �
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Lemma 2.2. Suppose M is an R-module and m ∈ V . Then

TorRm
i (Mm, κ(m)) 6= 0⇔ TorRi (M,κ(m)) 6= 0,

for all i ≥ 0.

Proof. Localization is exact, so TorRm
i (Mm, κ(m)) = TorRi (M,κ(m))m, for all i ≥ 0. The

implication “⇒” follows.
For the converse, we must check that if x ∈ TorRi (M,κ(m)) is nonzero, then its image in

the localization at m is also nonzero. It is sufficient to check that rx = 0 for r ∈ R implies
that either r ∈ m, or x = 0.

For this, let F• → M → 0 be a projective resolution of M . Suppose c ∈ Fi ⊗R κ(m) is a
representative for x. Then rx = 0 implies rc = ∂(d) for some d ∈ Fi+1⊗R κ(m). If r 6∈ m, then
rs = 1 +m for some s ∈ R and m ∈ m, since m is maximal. Then ∂(sd) = (rs)c = c+mc = c,
and so x = [c] = 0, thereby completing the proof. �

2.2. Algebraic preliminaries II. In this section, we briefly note some homological algebra
special to Hopf algebras. We let R be a Hopf algebra with antipode ι : R→ R, which we will
always assume to be an involution. Our principal example will be the group algebra R = k[G],
where the antipode is defined on the group elements by ι(g) = g−1.

If A is a right R-module, then we may also regard A as a left R-module by letting r ·
a := a · ι(r) for r ∈ R and a ∈ A, and analogously if A is a left R-module. If we wish to
emphasize the point, we will write ι(A) in place of A. Even when R is commutative, then, we
preserve the distinction between left and right modules. If A and B are left R-modules, then
A ⊗k B and Homk(A,B) are left R-modules via the coproduct and, respectively, the action
(rf)(a) = f(ι(r) · a), for f ∈ Homk(A,B), all r ∈ R, and a ∈ A.

Lemma 2.3. Let R be a Hopf algebra over k. Suppose D is a right R-module and A is a left
R-module.

(1) If D is flat over k, then TorR. (D,A) = TorR. (k, D ⊗k A).
(2) If D is projective over k, then Ext

.
R(D,A) = Ext

.
R(k,Homk(D,A)).

Proof. For the first statement, we claim it is enough to check that

(2) D ⊗R A ∼= k⊗R (D ⊗k A)

for any A. Indeed, suppose Q. is a projective resolution of A. It is easily checked that if B
is a flat R-module, then so is D ⊗k B; then D ⊗k Q. is a flat resolution of A, and the result
follows.

To verify (2), let η and ε denote the unit and counit, respectively. We check that the k-
bilinear map induced by (c, d⊗ a) 7→ η(c)d⊗ a is R-bilinear. For this, we note (1 · r, d⊗ a) 7→
ηε(r)d⊗ a. On the right, we compute with Sweedler notation, as in [Swe69]:

(1, r · (d⊗ a)) 7→
∑

dι(r(1))⊗ r(2)a

=
∑

dι(r(1))r(2) ⊗ a
= ηε(r)d⊗ a.

For the second statement, we check that

(3) HomR(D,A) ∼= HomR(k,Homk(D,A)),

using a similar argument, which we omit. �
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2.3. Jump loci of chain complexes. Various notions of jump loci for rank-1 local systems,
resonance varieties of graded commutative algebras, and support varieties of Alexander invari-
ants of spaces are all instances of the following basic notions. Here, we assume that k is an
algebraically closed field, and R is commutative.

Definition 2.4. If C. is a chain complex of finitely-generated R-modules, we define its ho-
mology jump loci as follows:

(4) Vi,d(C.) :=
{
m ∈ V : dimκ(m)Hi(C ⊗R κ(m)) ≥ d

}
,

for all integers d ≥ 0 and all i. Here, κ(m) := R/m.

Definition 2.5. The homology support loci of C. are, by definition,

(5) Wi,d(C.) := supp
( d∧

Hi(C.)
)
⊆ V.

Clearly, the setsWi,d(C.) depend only on the quasi-isomorphism class of the chain complex
C..

In both cases, if we wish to regard C. as a cochain complex, we will write Wi,d(C.) :=

supp
(∧d

Hi(C.)), and use the notation Vi,d(C.) analogously. We abbreviate Vi(C.) :=
Vi,1(C.), and likewise for Wi(C.), etc.

Remark 2.6. By construction, the sets Wi,d(C.) are Zariski-closed subsets of V = m-SpecR.
On the other hand, there are chain complexes C. for which the sets Vi(C.) are not Zariski-
closed, see e.g. [PS14, Example 2.4]. Nevertheless, if C. is a chain complex of free (finitely-
generated) R-modules, then all the jump loci Vi,d(C.) are Zariski-closed. ♦

In view of the above remark, we need to modify the above definition of jump loci in the
case when one of the R-modules Ci is not free. By a result of Mumford (see [Ha77, III.12.3]),
there is a chain complex F. of free R-modules which is quasi-isomorphic to C.; moreover, if
C. is bounded below, then F. may be chosen to be bounded below, too. Finally, as shown by
Budur and Wang [BW15], the varieties Vi,d(C.) := Vi,d(F.) depend only on C., and not on
the choice of F..

The various notions defined above are different, in general. Nevertheless, as noted in [PS14],
there is a spectral sequence which allows us to relate the jump loci Vi(C.) and the support
loci Wi(C.). For completeness, we reprove this result, in a slightly more general context.

Proposition 2.7 (Cor. 4.3, [PS14]). Suppose that C. is bounded below. Then, for each j ∈ Z,

(6)
⋃
i≤j

Vi(C.) =
⋃
i≤j

Wi(C.).

Proof. By the above discussion, we may assume C. is a chain complex of free modules. Since
C. is bounded below, there is a spectral sequence starting at E2

pq = TorRp (HqC, κ(m)) and
converging to Hp+q(C.⊗R κ(m)) for all m ∈ V . So if m ∈ Vj(C.) for some j, it must be the
case that E2

p,j−p 6= 0 for some p ≥ 0. It follows from Lemma 2.2 that (Hj−pC)m 6= 0: i.e.,
m ∈ Wj−p(C.), which gives the forward containment in (6).

On the other hand, suppose j is the least index for which m ∈ Wj(C.). By Lemma 2.2 again,
we have that (E2

pq)m = 0 for all q < j (and p < 0). By hypothesis, E2
0j 6= 0, so E∞0j 6= 0 as

well. That is, Wj(C.) \
⋃
i<jWi(C.) is included in Vj(C.), from which the other containment

follows. �
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2.4. Jump loci and cohomological vanishing. In the next two sections, we consider a
special case, the jump loci of projective resolutions. If C. is a chain complex of R-modules,
for n ∈ Z let C[n]i := Cn+i the shifted complex. In this case, the jump loci are nested.

Proposition 2.8. Suppose that R is commutative, and for some integer n, the shifted complex
C[n]. is a resolution of some R-module D by finitely-generated, projective modules. Then

(7) V ⊇ Vn(C.) ⊇ Vn+1(C.) ⊇ Vn+2(C.) ⊇ · · · .
We will refer to the phenomenon (7), when it occurs, as propagation of homology jump loci.

Proof. Clearly it is sufficient to consider the case n = 0. Suppose that m ∈ Vi(C.) for some
i > 0 and j is an integer for which n ≤ j ≤ i. Since C. is a resolution,

m ∈ Vi(C.)⇔ TorRi (D,κ(m)) 6= 0

⇔ TorRm
i (Dm, κ(m)) 6= 0

⇒ TorRj (D,κ(m)) 6= 0

⇒ m ∈ Vj(C.),
by Lemma 2.2 and then Lemma 2.1. The claim follows. �

2.5. Propagation and duality. If C is a projective resolution, we can also describe jump
loci in terms of homology support loci. Again, suppose R is a k-Hopf algebra with antipode ι.
Let −∗ := HomR(−,k) and −∨ := HomR(−, R).

Proposition 2.9. Suppose C. is a chain complex of finitely-generated, projective right R-
modules over a field k. Then

(8) ι(Vi,d(C.)) = Vi,d(C∨),

for all integers i, d.

Proof. Since C. is finitely-generated and projective, for any right R-module A, the natural
map

(9) HomR(C., R)⊗R ι(A) // HomR(C., A)

is an isomorphism. Using the Hom-tensor adjunction, for any m ∈ V = m-SpecR,

(C.⊗R κ(m))∗ ∼= HomR(C., κ(m)∗)(10)

∼= C∨ ⊗R κ(ι(m))

via the isomorphism above. Since k is a field, the Universal Coefficients Theorem implies this
is an isomorphism in homology, which completes the proof. �

Proposition 2.10. Suppose that C.[n] is a finitely-generated projective resolution for some
n ∈ Z. Then

Vk(C.) = Vk+1(C.) ∪ ι(Wk(C∨))

for all k ≥ n.
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Proof. We apply Proposition 2.7 to C∨, since (by hypothesis) C∨ is also bounded below. For
all integers k, ⋃

i≥k

ι(Wi(C∨)) =
⋃
i≥k

ι(Vi(C∨))

=
⋃
i≥k

Vi(C.), by Proposition 2.9,

= Vk(C.) provided k ≥ n,

using Proposition 2.8. The result follows. �

3. The BGG correspondence, Koszul modules, and resonance

3.1. The BGG correspondence. Let V be a finite-dimensional vector space over a field
k, and assume char(k) 6= 2.1 Let V ∗ denote the dual vector space. The Bernstein–Gelfand–
Gelfand correspondence is an explicit equivalence of bounded derived categories of graded
modules over the exterior algebra E :=

∧
V and over the symmetric algebra S := SymV ∗.

Following the exposition in [Eis05], we assign the nonzero elements of V ∗ degree 1; then
S1 = V ∗ and E−1 = E1 = V . If M is a graded module and r ∈ Z, we denote a degree shift by
letting M(r)i := Mr+i: then M(r)i = M i−r.

Let L denote the functor from the category of graded E-modules to the category of linear
free complexes over S, defined as follows: for a graded E-module P , L(P ) is the complex

(11) · · · // Pi ⊗k S
di // Pi−1 ⊗k S // · · · ,

with an S-linear differential d induced by left-multiplication by the canonical element ω ∈
V ⊗ V ∗.

In [EFS03, Theorem 4.3], Eisenbud, Fløystad, and Schreyer show that if M is a graded

S-module, with linear free resolution given by L(P ), then the dimension of TorEi (P,k) can be
computed from the dimensions of the graded pieces of the local cohomology modules of M .

We note a useful fact about the functor L.

Lemma 3.1 ([Eis05], Ex 7F7). If P is a finitely-generated E-module, then L(P )∨ = L(P ∗).

3.2. Resonance varieties. Here is another important example of (co)homology jump loci.
Let P be a finitely-generated E-module. For each a ∈ E1 = V , we note that a2 = 0, so
left-multiplication by a defines a cochain complex

(12) (P, a·) : · · · // P i−1
a // P i

a // P i+1 // · · · .

We note that the complex (P, a·) is a specialization of the construction (11): that is, if we
make the identification V = m-Spec(S), it follows easily that (P, a·) = L(P ) ⊗S κ(a). This
makes L(P ) a “universal complex” that parameterizes the complexes (P, a·). The correspond-
ing jump loci in this case are known as ‘resonance’ varieties.

Definition 3.2. If P is a finitely-generated graded E-module, its resonance varieties are
defined to be

Ri,d(P ) := Vi,d(L(P ))(13)

=
{
a ∈ V : dimkH

i(P, a·) ≥ d
}
.

1Alex: Do we really need this assumption here? Looks like it’s only needed later, to insure that a2 = 0

when defining the Aomoto complex.
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As usual, let Ri(P ) := Ri,1(P ).

Clearly, these sets are homogeneous algebraic subvarieties of the affine space V . Moreover,
if P i = 0, then Ri,d(P ) = ∅, for all d > 0. Our convention is to index these jump loci
cohomologically, since this is the natural choice for examples in the literature.

3.3. Propagation of resonance. In this section, we recall some equivalent conditions under
which the BGG correspondence becomes particularly simple.

Theorem 3.3 ([Eis05], Thm. 7.7). For a finitely-generated graded E-module P with Pi = 0
for i < 0, the following are equivalent.

(1) P ∗ has a linear free resolution.
(2) Hi(L(P )) = 0 for i 6= 0.

Definition 3.4. If P satisfies the hypotheses above, the E-module P ∗ is called a Koszul
module. In this case, we let F (P ) := H0(L(P )), an S-module.

With this, we obtain a special case of Proposition 2.8.

Proposition 3.5. Suppose that P is an E-module satisfying one of the equivalent conditions
of Theorem 3.3. Then

(14) V ⊇ R0(P ) ⊇ R−1(P ) ⊇ R−2(P ) ⊇ · · · .

Proof. We simply invoke Proposition 2.8, with C.= L(P ), and n = 0. �

Specializing further, consider the case of a cyclic, graded E-module, A := E/I. Following
the development in [EPY03], we make the following definition.

Definition 3.6. A cyclic, graded E-module A has the EPY property if A∗(n) is a Koszul
module for some integer n. If X is a finite-type CW-complex of dimension n and A = H.(X,k),
we say X has the EPY property.

If X has the EPY property, we note that the integer n must be the socle degree of A,
regarded as a k-algebra.

Theorem 3.7. Suppose A has the EPY property, with socle degree n. Then the resonance
varieties of A propagate:

Ri(A) ⊆ Ri+1(A)

for 0 ≤ i < n.

Proof. We apply Proposition 3.5 to the module P = A(−n), and note that Ri(A(−n)) =
Ri+n(A), for i ∈ Z. �

Example 3.8. The free E-module of rank 1 has the EPY property, since E∗(n) ∼= E; thus
the n-torus T = (S1)×n is a space with the EPY property. It is easily seen that Ri(E) = {0}
for 0 ≤ i ≤ n. ♦

Note that S is a Hopf algebra with antipode defined in degree 1 by x 7→ −x. Since the
resonance varieties are homogeneous, Proposition 2.9 simplifies to the statement that

Ri,d(P ) = Vi,d(L(P )∨)(15)

= Ri,d(P ∗).
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Let us also consider the relationship between the jump loci and support loci in the context
of propagation. If P ∗ is a Koszul module, then by Theorem 3.3, L(P ) resolves F (P ). By
Lemma 3.1, then,

Hi(L(P ∗)) = Hi(L(P )∨)(16)

= ExtiS(F (P ), S).

Consequently, Proposition 2.10 takes the following form.

Proposition 3.9. Suppose that P ∗ is a Koszul E-module. Then

R−k(P ) = R−k−1(P ) ∪ supp ExtkS(F (P ), S)

for all k ≥ 0.

In the special case where A is a cyclic E-module with socle degree n, this says Rk(A) =

Rk−1(A)∪supp Extn−kS (F (A), S), for 0 ≤ k ≤ n. We refer to Example 6.3 to see this illustrated
explicitly.

4. Duality and abelian duality spaces

4.1. Duality groups. We now recall a well-known notion, due to Bieri and Eckmann [BE73].
Let G be a group, and let ZG be its group-ring. For simplicity, we will assume G is of type FP,
i.e., there is a finite resolution P.→ Z → 0 of the trivial ZG-module Z by finitely generated
projective ZG-modules.

Definition 4.1. An FP-group G is called a duality group of dimension n if Hp(G,ZG) = 0
for p 6= n and Hn(G,ZG) is non-zero and torsion-free.

If G satisfies the above condition, the abelian group C = Hn(G,ZG), viewed as a (right)
module over ZG, is called the dualizing module of G. Then n is the cohomological dimension
of G, and the hypotheses imply that the complex

(17) 0 // P∨0 // P∨1 // · · · // P∨n // C // 0

is a finitely generated projective resolution of C. Using the identification (9), for all i we have

Hi(G,A) ∼= TorZGn−i(C,A)

∼= Hn−i(G,C ⊗Z A),(18)

by Lemma 2.3.
By a celebrated theorem of Stallings and Swan, the duality groups of dimension 1 are

precisely the finitely generated free groups. It is also known that torsion-free, one-relator
groups are duality groups of dimension 2. The class of duality groups is closed under extensions
and passing to finite-index subgroups. On the other hand, a free product of duality groups is
not a duality group, unless all the factors are free, cf. [Br82].

Of note is the situation when the dualizing module, C = Hn(G,ZG), is the trivial ZG-
module Z. In this case, G is an (orientable) Poincaré duality group of dimension n—for short,
a PDn-group. For instance, if G admits a classifying space which is a compact, orientable,
manifold of dimension n, then G belongs to this class. If G is a duality group that is not
a Poincaré duality group, then the dualizing module C contains no non-zero ZG-submodule
which is finitely generated over Z, cf. [Fa75].
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Remark 4.2. If we replace Z by a principal ideal domain k in Definition 4.1, we will say G
is a duality group over k. We use the same terminology in the definitions that follow. We will
consider only the cases where k = Z or a field. Clearly, if G is a duality group, then it is a
duality group over any choice of k. ♦

4.2. Duality spaces. The above notion can be extended from groups to spaces. One pos-
sible definition of a duality space is given in [BE73, § 6.2]. For our purposes, we adopt a
slightly different definition, inspired by recent work of Davis, Januszkiewicz, Leary, and Okun
[DLJO11].

Let X is a path-connected space with the homotopy type of a CW-complex. We shall
assume X is of finite-type, i.e., it has finitely many cells in each dimension. Without loss of
generality, we may assume X has a single 0-cell, say, x0 ∈ X. Let G = π1(X,x0) be the
fundamental group of X.

Definition 4.3. A space X as above is called a duality space of dimension n if Hp(X,ZG) = 0
for p 6= n and Hn(X,ZG) is non-zero and torsion-free.

In other words, the cohomology with compact supports of the universal cover, X̃, is con-
centrated in a single dimension (where it is torsion-free). Clearly, if X is aspherical, then its
fundamental group is a duality group. Generalizing the discussion above slightly shows that,
if X is a duality space of dimension n and C = Hn(X,ZG), then

(19) Hi(X,A) ∼= Hn−i(G,C ⊗Z A)

for all i ≥ 0 and ZG-modules A.

4.3. Abelian duality spaces. Let Xab be the universal abelian cover of X. The fundamental
group of Xab is G′, the commutator subgroup of G, while the group of deck transformations is
the abelianization, Gab = G/G′. We introduce now a variation on the above definition, which
essentially replaces the universal cover by the universal abelian cover.

Definition 4.4. The space X is called an abelian duality space of dimension n if X is homotopy
equivalent to a finite, connected CW-complex of dimension n, Hp(X,ZGab) = 0 for p 6= n,
and Hn(X,ZGab) is non-zero and torsion-free. If in addition X is aspherical, then we will call
G := π1(X, ∗) an abelian duality group of dimension n.

In that case, the group D = Hn(X,ZGab), viewed as a module over ZGab, is called the
dualizing module of X. We shall sometimes refer to these spaces as ab-duality spaces.

As an example, finitely generated free groups are abelian duality groups. On the other
hand, surface groups of genus at least 2 are not abelian duality groups (see Example 5.6),
though of course they are (Poincaré) duality groups. Next, we give an example (suggested by
Ian Leary) of an abelian duality group which is not a duality group:

Example 4.5. Let H = 〈x1, . . . , x4 | x−2
1 x2x1x

−1
2 , . . . , x−2

4 x1x4x
−1
1 〉 be Higman’s acyclic

group, and let G = Z2 ∗H. Then G is an abelian duality group (of dimension 2), but not a
duality group. ♦

Of note is the situation when the dualizing module, D = Hn(G,ZGab), is the trivial ZGab-
module Z. Let us call such a group a Poincaré abelian duality group of dimension n. Such
groups (with n = 2) were studied by Fenn and Sjerve in [FS82]. We extend the notion as
before to spaces.

Question 4.6. Suppose G is an abelian duality group that is not a Poincaré abelian duality
group. Does the dualizing module D contain any non-zero ZGab-submodule which is finitely
generated over Z?
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As the name is intended to suggest, abelian duality spaces have a (co)homological property
which is analogous to the classical one of (18). For convenience, let R = ZGab.

Proposition 4.7. Suppose X is an abelian duality space of dimension n with dualizing module
D, and A is a (left) R-module. Then

(20) Hi(X,A) ∼= TorRn−i(D,A) ∼= Hn−i(G
ab, D ⊗Z A)

for all i ≥ 0. If, moreover, D is a free abelian group, then

(21) Hi(X,A) ∼= Hn−i(Gab,HomZ(D,A)).

Proof. By hypothesis, C.(X̃ab)[n] is a finitely-generated complex of free R-modules, so we

may identify HomR(C.(X̃ab), A) with C.(X̃ab) ⊗R A. Since C.(X̃ab)[n] is a resolution of D,
we may now apply Lemma 2.3. The second claim is similar. �

One consequence is that the Poincaré abelian duality property is rather rare.

Corollary 4.8. Suppose X is both a Poincaré duality space and an abelian duality space.
Then X is a Poincaré abelian duality space. Moreover, for such X the commutator subgroup
of π1(X) is perfect.

Proof. Using the first property, and the isomorphism (19), we see that D = Hn(X,ZGab) =
H0(X,ZGab) = Z, the trivial module, and this proves the first claim.

Now we assume X is a Poincaré abelian duality space. Using now the isomorphism (21),
we see that

Hp(X,ZGab) = Hn−p(Gab,ZGab)

= 0 for all p 6= 0.

In particular, G′/G′′ ∼= H1(X,ZGab) = 0, and the second claim is proved. �

Example 4.9. Let HR be the algebraic group of 3× 3 unipotent matrices with entries in R,
and let HZ be subgroup of integral matrices. The quotient space, M = HR/HZ is a closed,
orientable, aspherical 3-manifold, known as the Heisenberg nilmanifold. Its fundamental group
G is the free, 2-step nilpotent group of rank 2. Since G is a Poincaré duality group of dimension
3, it cannot be an abelian duality group. We will return to this group in Example 4.16. ♦

4.4. Alexander invariants. Let us record another simple corollary of Proposition 4.7. Let

Xν → X be a regular abelian cover, classified by an epimorphism G
ab−→ Gab

ν−→ H, where H
is a (finitely generated) abelian group. By Shapiro’s Lemma, Hp(X

ν ,Z) ∼= Hp(X,ZH), where
ZH is viewed as an R-module via the map ν. If X is an abelian duality space of dimension n,
Proposition 4.7 shows that

(22) H.(Xν ,Z) ∼= Extn−
.

R (D,ZH).

Recall from §5.1 that the p-th Alexander invariant of a space X is the R-module Hp(X,R),
where R = ZGab.

Corollary 4.10. Suppose X is an abelian duality space and Gab is torsion-free. If the p-th
Alexander invariant is non-zero, then its support has dimension at most p+m− n, where m
is the rank of Gab.

Proof. In general, ExtqR(D,R) is supported in codimension q or higher [EHV92, Thm. 1.1].
On the other hand, the dimension of R equals m. The desired conclusion follows. �
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4.5. Abelian duality and extensions. In [BE73, Thm. 3.5], Bieri and Eckmann showed
that the class of duality groups is closed under extensions. In this section, we note that some
analogous results hold for abelian duality groups and spaces.

Suppose F → E → B is a fibration sequence of path-connected CW-complexes. The exact
sequence of low-degree terms in the Serre spectral sequence reads as follows:

(23) H2(E,Z) // H2(B,Z)
d // H1(F,Z)Q // H1(E,Z) // H1(B,Z) // 0 ,

where Q = π1(B).

Definition 4.11. We say that the sequence F → E → B is ab-exact if

(1) Q acts trivially on H1(F,Z); and
(2) the map d : H2(B,Z)→ H1(F,Z) is zero.

In the presence of condition (1), condition (2) is equivalent to the exactness of the sequence
0→ Nab → Gab → Qab → 0, where N = π1(F ) and G = π1(E).

Remark 4.12. For fibrations over S1, the second condition follows from the first, since the
map d in (23) is zero for dimensional reasons. In this case, ab-exactness is equivalent to trivial
monodromy action of the base on the first homology group of the fibre. ♦

Although the definition is clearly quite restrictive, we will see that some interesting group
extensions in §6 and §7 are indeed ab-exact.

Proposition 4.13. Suppose F → E → B is an ab-exact fibration of path-connected, finite-type
CW-complexes.

(1) If F and B are ab-duality spaces of dimensions n and r, respectively, then E is an
ab-duality space of dimension n+ r.

(2) If F and E are ab-duality spaces of dimensions n and n+r, respectively, and dimB =
r, then B is an ab-duality space of dimension r.

(3) If E and B are ab-duality spaces of dimensions n+ r and r, respectively, and dimF =
n, then F is an ab-duality space of dimension n.

Proof. Set Q = π1(B), G = π1(E), and N = π1(F ). The Serre spectral sequence has

Epq2 = Hp(B,Hq(F,Z[Gab]))⇒ Hp+q(E,Z[Gab]).

Clearly, the action of N = π1(F ) on Z[Gab] factors through Nab. Furthermore, exactness of
(23) insures that Z[Gab] ∼= Z[Qab] ⊗Z Z[Nab], as a Z[Nab]-module. By hypothesis, F is of
finite-type, so H∗(F,−) commutes with colimits, giving

(24) Epq2
∼= Hp(B,Z[Qab]⊗Hq(F,Z[Nab])).

To prove (1), assume F and B are abelian duality spaces with dualizing modules DF and
DB , respectively. Then Epq2 = 0 unless q = n, in which case

Epn2
∼= Hp(B,Z[Qab]⊗Z DF ).

By Definition 4.11(1), the action of Q on Z[Nab] is trivial, so DF is also trivial as a Q-module.
Again, B is of finite-type, so

Epn2
∼= Hp(B,Z[Qab])⊗Z DF ,

which is zero unless p = r, where Ern2
∼= DB ⊗Z DF , and the spectral sequence gives

Hp(E,Z[Gab]) ∼= DB ⊗Z DF for p = r + n, and zero otherwise. This is torsion-free, since
DB and DF are torsion-free. Moreover, dimE ≤ dimF + dimB = r+n, so dimE = r+n. It
follows that E is an abelian duality space of dimension r + n.
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To prove (2), suppose now F and E are abelian duality spaces. The same argument as
above shows

Hp+n(E,Z[Gab]) ∼= Hp(B,Z[Qab])⊗Z DF ,

for all p, so Hr(B,Z[Qab]) ⊗Z DF
∼= DE . Since DF and DE are torsion-free, it follows that

Hp(B,Z[Qab]) is torsion-free, nonzero, and concentrated in dimension p = r. By hypothesis,
dimB = r, so B is an abelian duality space.

To prove (3), suppose E and B are abelian duality spaces. From (24), since B is of finite-
type, we obtain

Erq2
∼= DB ⊗Hq(F,Z[Nab]),

and Epq2 = 0 for p 6= r. So the spectral sequence degenerates again to give

Hn+q(E,Z[Gab]) ∼= DB ⊗Z H
q(F,Z[Nab]),

and the argument concludes as in case (2). �

An analogous statement holds for groups in place of spaces: we simply replace the hypothesis
“finite-type CW-complex of dimension n” with “FP group of cohomological dimension n.”

4.6. Discussion and examples. We say a group G is an almost-direct product of free groups,
if it can be expressed as an iterated semidirect product of the form G = Fnd o · · ·oFn1

, where
each group Fnp is free (of rank np ≥ 1), and acts on each group Fnq with q > p via an
automorphism inducing the identity in homology.

Proposition 4.13, part (1) has an immediate application.

Corollary 4.14. If G = Fnd o · · ·o Fn1
is an almost-direct product of free groups, then G is

an abelian duality group of dimension d.

Example 4.15. Both the pure braid group Pn and the group of pure symmetric automor-
phisms PΣ+

n are almost direct products of the form Fn−1 o · · · o F1. Thus they are abelian
duality groups of dimension n− 1. ♦

The two conditions from Definition 4.11 are necessary for Proposition 4.13 to hold.

Example 4.16. Let G be the (discrete) Heisenberg group, which we saw in Example 4.9 was
not an abelian duality group. Since G is a split extension of Z by Z2, with monodromy ( 1 1

0 1 ),
we see that condition (1) is necessary. Moreover, G is also a central extension of Z2 by Z,
yet the map d : H2(Z2,Z) → H1(Z,Z) is an isomorphism, thus showing that condition (2) is
necessary. ♦

5. Abelian duality, jump loci, and propagation

In this section, we note some qualitative constraints that the abelian duality property
imposes on a space. We begin by recalling the definitions of the jump loci associated with a
space.

5.1. Jump loci of spaces.

Definition 5.1. Suppose X is a connected, finite-type CW-complex, and G = π1(X, ∗) is

its fundamental group. Let Ĝ := Hom(G,k∗) denote the group of multiplicative, k-valued
characters. The characteristic varieties of X are defined as

(25) Vi,d(X;k) := Vi,d(C.(X̃ab,k)),
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where C.(X̃ab,k) denotes the equivariant cellular chain complex of the universal abelian cover
(with coefficients in k), viewed as a chain complex over the group-ring R = k[Gab]. Here,

m-SpecR = Ĝab = Ĝ.
The cohomological variant is defined analogously:

(26) Vi,d(X;k) := Vi,d(C.(X̃ab,k)),

where C.(X̃ab,k) = C.(X̃ab,k)∨ is the equivariant cochain complex of X̃ab.
We note that the support loci of the Alexander invariants of X are sometimes known as the

Alexander varieties of X. We let

Wi,d(X;k) :=Wi,d(C.(X̃ab,k))(27)

= supp
∧d

Hi(X,R).

The varieties Wi,d(X;k) are defined analogously.

Remark 5.2. By Proposition 2.9, Vi,d(X;k) = ι(Vi,d(X;k)), for all integers i and d, as noted
in [KP14, Lem. 4.3]. On the other hand, we remark that there is no such tight relationship
between Wi(X;k) and Wi(X;k); we will come back to this point in Example 6.3. ♦

5.2. Propagation of characteristic varieties. Perhaps the most striking consequence of
abelian duality is the following nestedness property of the characteristic varieties. Let k be an
algebraically closed field.

Theorem 5.3. Suppose X is an abelian duality space of dimension n over k. Then the

characteristic varieties of X propagate: that is, for any character ρ ∈ Ĝ, if Hp(X,kρ) 6= 0,
then Hq(X,kρ) 6= 0 for all p ≤ q ≤ n. Equivalently,

{1} = V0(X,k) ⊆ V1(X,k) ⊆ · · · ⊆ Vn(X,k).

Proof. SinceX is an abelian duality space, the equivariant cochain complex C.(X̃ab,k) satisfies
the hypotheses of Proposition 2.8. �

By considering the trivial representation, we note in particular:

Corollary 5.4. Suppose X is an abelian duality space of dimension n ≥ 1. Then bp(X) > 0,
for all 0 ≤ p ≤ n.

Remark 5.5. In [Hm86], J.-C. Hausmann showed that an analogue of the Kan–Thurston
Theorem holds for duality groups: given any finite CW-complex X, there is a duality group
G and a map BG → X inducing an isomorphism in homology. In view of Corollary 5.4, no
such result holds for abelian duality groups. ♦

Example 5.6. Let Sg be a surface of genus g > 1. Let Πg = π1(Sg). It is well-known
that Sg ' K(Πg, 1), and Πg is a 2-dimensional Poincaré duality group. That is, Hp(Sg,ZΠg)
is isomorphic to Z if p = 2, and is 0 otherwise. One can check, though, that for all ρ ∈
Hom(Πg,k∗) except the trivial representation, we have H1(Sg,kρ) ∼= k2g−2 and H2(Sg,kρ) =
0. By Theorem 5.3, then, the surface of genus g > 1 is not an abelian duality space. This
example also shows that propagation of characteristic varieties fails to hold, in general, for
duality spaces. ♦

We also note that the rank of Gab must be at least the dimension of X.

Proposition 5.7. If X is an abelian duality space of dimension n over k, then dimkH
1(X,k) ≥

n.
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Proof. Set m = dimkH
1(X,k). Recall that R = k[Gab], and the cochain complex of the

universal abelian cover is a free resolution of the dualizing module D as an R-module. Then
pdimRD ≤ n. On the other hand, by Proposition 4.7, TorRn (D,k) = H0(X,k) 6= 0, where k is
the trivial module. It follows that pdimRD = n ≤ m, since R has (global) dimension m. �

Along the same lines, the dimensions of irreducible components of Vi(X,k) are not arbi-
trary. As the next proposition shows, such components correspond to associated primes of the
dualizing module D. We continue to let m denote the rank of Gab.2

Proposition 5.8. Let X be an abelian duality space of dimension n. If Z = V (P ) is an
irreducible component of Vi(X,k) for a prime ideal P , then pdimRR/P ≥ n− i. If, moreover,
Z is Cohen–Macaulay, then dimZ ≤ i+ n−m.

Proof. As in the proof of [EPY03, Theorem 4.1(c)], we let Z be such a component of dimension
d, and let ρ be the generic point of Z. Then Hi(X,κ(ρ)) 6= 0, so by Lemma 2.2 and Proposi-

tion 4.7, TorRn−i(D,R/P ) 6= 0. This implies n− i ≤ pdimR/P . If Z is Cohen–Macaulay, then
dimZ + pdimR Z = m, from which the second claim follows. �

5.3. Propagation of resonance varieties. In the previous section, we saw that the abelian
duality property informed on the behaviour of the characteristic varieties. Here, we note that
the situation is analogous for the EPY property and resonance varieties.

First, we define the resonance varieties of a space. As before, let X be a connected, finite-
type CW-complex. Consider the cohomology algebra A = H∗(X,k). If char k = 2, we will
assume that H1(X,Z) has no 2-torsion. In this case, it is readily checked that a2 = 0 for
every a ∈ A1; thus, A can be viewed, in a natural way, as a module over the exterior algebra
E =

∧
A1.

Definition 5.9. The resonance varieties of X (over k) are the resonance varieties of A, viewed
as a module over E:

(28) Ri,d(X,k) = {a ∈ H1(X,k) | dimkH
i(A, a·) ≥ d}.

For simplicity, we shall write Ri(X,k) = Ri,1(X,k). For a group G with finite-type classi-
fying space, we shall also write Ri,d(G,k) = Ri,d(K(G, 1),k).

We begin with the analogous result to Theorem 5.3, which is simply a restatement of
Theorem 3.7, applied to the cohomology ring of a space.

Theorem 5.10. Suppose X is a space of dimension n with the EPY property over a field k.
Then the resonance varieties of X propagate: that is, for any a ∈ A1, if Hp(A, a·) 6= 0, then
Hq(A, a·) 6= 0 for all p ≤ q ≤ n, where A = H.(X,k). Equivalently,

{0} = R0(X,k) ⊆ R1(X,k) ⊆ · · · ⊆ Rn(X,k).

We continue with a further examination of the interplay between the duality properties of
a space and the nature of its resonance varieties. We start with a simple observation relating
Poincaré duality to the top resonance variety.

Proposition 5.11. Let M be a compact, connected, orientable manifold of dimension n. Then
Rn(M, k) = {0}.

2Alex: This could be different from dimkH
1(X, k) ≥ n if char(k) divides the order of the torsion of Gab...

GD: yikes. indeed, should be dimkH
1(X, k).
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Proof. Let ω ∈ Hn(M,Z) ∼= Z be the generator defining the orientation on M , and ωk its
image in Hn(M,k) ∼= k. Given any a ∈ H1(M,k), Poincaré duality guarantees the existence
of a cohomology class b ∈ Hn−1(M, k) such that a ∪ b = ωk, and we are done. �

The same argument proves the following: If G is a Poincaré duality group of dimension n,
then Rn(G,k) = 0. In dimension n = 3, we can say a bit more.

Proposition 5.12 ([DS09]). Let M be a closed, orientable 3-manifold. If b1(M) is even, then
R1(M,C) = H1(M,C).

Putting together Propositions 5.11 and 5.12, we obtain the following corollary.

Corollary 5.13. Let M be a closed, orientable 3-manifold. If b1(M) is even and non-zero,
then the resonance varieties of M do not propagate (in characteristic 0).

We shall see a concrete instance of this phenomenon in Example 5.17 below.

5.4. Minimal complexes. Here, we find that, if X is a minimal CW-complex, then the
abelian duality and EPY properties are related.

We say the CW-structure on X is minimal if the number of i-cells of X equals the Betti
number bi(X), for every i ≥ 0. Equivalently, the boundary maps in the cellular chain complex
C.(X,Z) are all zero maps. In particular, the homology groups Hi(X,Z) are all torsion-free,
and thus resonance varieties are defined in all characteristics.

For instance, if M is a smooth, closed manifold admitting a perfect Morse function, then
M has a minimal cell structure. Evidently, spheres, tori, and orientable surfaces, as well as
products thereof are of this type.

Theorem 5.14 ([PS10]). Let X be a minimal CW-complex. Then the linearization of the
cochain complex C.(Xab,k) coincides with the universal Aomoto complex of A = H∗(X,k).

To see how this works concretely, pick an isomorphism H1(X,Z) ∼= Zm, and identify the
group ring k[Zm] with the Laurent polynomial ring Λ = k[t±1

1 , . . . , t±1
m ]. Next, filter Λ by

powers of the maximal ideal I = (t1 − 1, . . . , tm − 1), and identify the associated graded ring,
gr(Λ), with the polynomial ring S = k[x1, . . . , xm], via the ring map ti − 1 7→ xi.

The minimality hypothesis allows us to identify Ci(X
ab,k) with Λ⊗kHi(X,k) and Ci(Xab,k)

with Ai⊗kΛ. Under these identifications, the boundary map ∂ab
i+1 : Ci+1(Xab,k)→ Ci(X

ab,k)

dualizes to a map δi : Ai⊗k Λ→ Ai+1⊗k Λ. Let gr(δi) : Ai⊗kS → Ai+1⊗kS be the associated
graded of δi, and let gr(δi) lin be its linear part. Theorem 5.14 then provides an identification

(29) gr(δi) lin = di : Ai ⊗k S −→ Ai+1 ⊗k S.

Set H = H1(X,Z). We continue to let A = H.(X,k) be the cohomology ring of X regarded
as an E-module, where E =

∧
A1, and we let n be the socle degree of A.

Theorem 5.15. If X is a minimal CW-complex, and the E-module A = H∗(X,k) has the
EPY property, then the I-adic completion of Hp(X,kH) vanishes for p 6= n.

Proof. By our minimality assumption, the equivariant spectral sequence from [PS10] starts at

Epq0 = grp(C
p+q(Xab,k))(30)

∼= Ap+q ⊗ Sp.
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Furthermore, the differential d0 vanishes, and so Epq1 = Epq0 , with differential d1 given by (29).
Hence, Epq2 = Hp+q(A⊗ S, δ)p. By our Koszulness assumption,

(31) Epq2 =

{
F (A)p if p+ q = n,

0 otherwise.

In particular, d2 = 0, and so Epq∞ = Epq2 . Finally, we also know from [PS10] that the
spectral sequence converges to the I-adic completion of H∗(X,kH). The desired conclusion
readily follows. �

In general, the conclusion of the theorem above does not hold for the (uncompleted) modules
Hp(X,kGab). That is, even if a space X has the EPY property, X itself need not be an abelian
duality space. This is illustrated in the following example.

Example 5.16. Perhaps take something like G = Z2 ∗Z/2Z? Another ingredient may be G =
〈a, b | [a2, b] = 1〉. We want an example with only a translated component in the characteristic
varieties. Then take a free product with Z2: the translated point won’t propagate, but the
whole thing looks fine in the completion. ♦

5.5. Discussion and example. We conclude this section with several more examples. The
first is a (non-formal) space for which the characteristic varieties propagate, but the resonance
varieties do not.

Example 5.17. Once again, we consider the Heisenberg manifold of Example 4.9. It is readily
checked that Vi(M) = {1} for all i ≤ 3; thus, the characteristic varieties of M propagate. On
the other hand, H1(M,Z) = Z2, and the cup product map H1⊗H1 → H2 vanishes. Therefore,
resonance does not propagate: R1(M,k) = k2, yet R3(M,k) = {0}.

Finally, note that M is an S1-bundle over T 2 with Euler number 1, and thus admits a
minimal cell decomposition. Hence, by Theorems 3.7 and 5.14, we see again that the manifold
M is not an abelian duality space. This, despite the fact that Mab is homotopy equivalent to
S1, which of course is a PD1-space. ♦

In the case of 2-complexes with non-negative Euler characteristic, propagation occurs be-
cause of dimensional considerations. However, such spaces need not be abelian duality spaces,
as we see below.

Proposition 5.18. Suppose X is a connected, finite 2-complex with χ(X) ≥ 0. If H1(X,k) 6=
0, the resonance and characteristic varieties of X both propagate.

Proof. Clearly V0(X) = {1}, and 1 ∈ Vi(X) for i = 1, 2, by hypothesis. Now consider a
character ρ 6= 1. The universal cover of X has a cellular chain complex

C.(X̃) := k[G]c2 // k[G]c1 // k[G]c0 ,

for some integers ci with χ(X) = c2−c1 +c0 ≥ 0. Then H.(X,kρ) is computed by the complex

Homk[G](C.(X̃, kρ)) : kc2 kc1oo kc0oo .

Since H0(X,kρ) = 0, we have c2 − c1 ≥ 0, which means if ρ ∈ V1(X,k), then ρ ∈ V2(X,k).
The analogous argument applies for the resonance varieties as well. �

Finally, here is an example of a group which isn’t an abelian duality group, yet for which
resonance does propagate.
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Example 5.19. Let X be the presentation 2-complex for the 1-relator group

G = 〈x1, x2 | [x1, x2][x2, [x2, x1]] = 1〉.

Since the relator is not a proper power, X is a K(G, 1). A standard computation shows that
H.(X,Z) = H.(T 2,Z); in particular, G is a PD2-group of nonnegative Euler characteristic, so
the proposition above applies to show that its resonance and characteristic varieties propagate.
Indeed, R1(X,k) = R2(X,k) = {0}, and moreover,

V1(X,k) = V2(X,k) = {(t1, t2) ∈ (k∗)2 | t2 = 2} ∪ {1}.

Next we note that the Euler characteristic assumption is necessary. Let Y = X∨S1. Again,
X is an aspherical, minimal 2-complex. Moreover, both R1(Y,k) and R2(Y,k) are equal to
H1(Y, k) = k3, and so resonance propagates for Y . On the other hand, V1(Y,k) = H1(Y,k∗) =
(k∗)3, yet

V2(Y,k) = {(t1, t2, t3) ∈ (k∗)3 | t2 = 2} ∪ {1}.
Therefore, if char(k) 6= 2, the characteristic varieties of Y do not propagate. By Theorem 5.3,
the space Y is not an abelian duality space. ♦

6. Hyperplane arrangements

In this section, we give some examples of abelian duality spaces.

6.1. Linear arrangements. Let A be an essential, central hyperplane arrangement in Cn+1.
Let M(A) = Cn+1\

⋃
H∈AH be the complement of the arrangement, and U(A) = Pn\

⋃
H∈AH

the projective complement. Then M(A) ∼= U(A) × C∗, and U(A) may be regarded as a
the complement of a possibly non-central arrangement in Cn−1 by a choice of a hyperplane
at infinity. Without loss of generality, then, we mostly restrict our attention to projective
complements. Then U(A) is a Stein manifold, and thus has the homotopy type of a connected
CW-complex of dimension n. Moreover, as shown in [DP03, Ra02], the cell structure can be
chosen to be minimal.

The cohomology ring H.(U(A),Z) was computed by Brieskorn in the early 1970s, building
on pioneering work of Arnol’d on the cohomology ring of the braid arrangement. It follows
from Brieskorn’s work that the space U(A) is formal. We let A(A) := H.(U(A),Z), the
(projective) Orlik-Solomon algebra of A.

As shown in [DLJO11], the complement U(A) is a duality space. It turns out that a
hyperplane complement is also an abelian duality space. Both of these properties follow from
a more general cohomological vanishing result developed in [DSY15], an instance of which is
the following:

Theorem 6.1 (Thm. 5.6 in [DSY15]). Let U(A) be the complement of an essential arrange-
ment in Pn, and set H = H1(U(A),Z). Then Hp(U(A),ZH) = 0 for all p 6= n, and
D(A) := Hn(U(A),ZH) is free abelian.

A main result of [EPY03] is that the shifted cohomology ring A(A)(n) is a Koszul module
over the exterior algebra E =

∧
A1(A): that is, it satisfies the EPY property. So arrangement

complements satisfy the hypotheses of both Theorems 5.3 and 5.10.

Corollary 6.2. Let A be a hyperplane arrangement of rank n+1. Then both the characteristic
and the resonance varieties of its complement, U = U(A), propagate:

V1(U,k) ⊆ · · · ⊆ Vn(U,k) and R1(U,k) ⊆ · · · ⊆ Rn(U,k).
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6.2. Examples and discussion. We now give an example of an arrangement for which the
support loci of the Orlik–Solomon algebra do not propagate.

Example 6.3. Let A denote the graphic arrangement defined by equations xi − xj for edges
{i, j} in the graph below.

1

2

3

4

5

6

If π is a partition of [6], we let Pπ denote the codimension-k linear subspace of V given by
equations

∑
j∈πs xj = 0, for each 1 ≤ s ≤ k, where k = |π|.

Let A = H.(U(A),Q). Calculations as in [De15] show that W1(L(A)) = P1|2|3|456 and

W2(L(A)) = P1234|5|6; we illustrate Proposition 3.9 by noting that

R0(A) =W0(L(A)) = P1|2|3|4|5|6,

R1(A) =W1(L(A)),

R2(A) =W1(L(A)) ∪W2(L(A)), and

R3(A) =W3(L(A)) = P123456.

Since W1(L(A)) 6⊆ W2(L(A)), we see in particular that, unlike the resonance varieties, the
support loci of the complex L(A) do not have the propagation property. ♦

Remark 6.4. In [Bu11], Budur establishes the following inclusions for the complement M of
an arrangement of rank n:

Ri(M,C) ⊆ Ri2(M,C) for i ≤ n− 2,

Ri(M,C) ⊆ Rid(M,C) for i < n− 2 and d < 1 + (n− 3)/(i+ 1).

It would be interesting to see whether this type of ‘deeper’ propagation arises in the more
general setup of minimal, abelian duality spaces. ♦

6.3. Elliptic arrangements. Let E be an elliptic curve. An elliptic arrangement in E×n

is a finite collection A = {H1, . . . ,Hm} of fibers of group homomorphisms E×n → E, see
[LV12, Bi15]. Such homomorphisms are parameterized by integer vectors: writing E as an
additive group, we may write Hi = f−1

i (ζi) for some point ζi ∈ E, where

(32) fi(x1, . . . , xn) =

n∑
j=1

aijxj ,

and A = (aij) is a m× n integer matrix. We let corank(A) := n− rank(A).
Let U(A) = E×n \

⋃m
1=1Hi be the complement of our elliptic arrangement. We show in

[DSY15, Cor. 6.4] that U(A) is both a duality and an abelian duality space of dimension
n+ r, where r is the corank of A. Applying Theorem 5.3, we obtain the following immediate
corollary.

Corollary 6.5. Let A be an elliptic arrangement in E×n. Then the characteristic varieties
of its complement, U = U(A), propagate:

V1(U,k) ⊆ · · · ⊆ Vn(U,k).

Remark 6.6. We do not know whether complements of elliptic arrangements satisfy the EPY
property, or whether the resonance varieties of elliptic arrangements propagate. ♦
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6.4. Milnor fibres of linear arrangements. Now let fA be a reduced defining polynomial
for

⋃
H∈AH, a product of linear forms. The evaluation map fA : Cn+1 → C restricts to

a fibration, F (A) → M(A) → C∗, known as the Milnor fibration. For a full discussion,
see [Su13]. The monodromy action of π1(C∗) on H.(F,Z) is determined by the action of a
generator, h.: H.(F,Z)→ H.(F,Z). The order of h. divides N := deg fA = |A|.

Theorem 6.7. Suppose that A is an essential, central arrangement of rank n + 1, and the
monodromy action of h1 on H1(F (A),Z) is trivial. Then F (A) is an abelian duality space of
dimension n.

Proof. We know M(A) is an abelian duality space, by Theorem 6.1. By Remark 4.12, the
fibration sequence F (A)→M(A)→ C∗ is ab-exact provided that h1 is the identity map. The
conclusion then follows from Proposition 4.13. �

Remark 6.8. The condition that h1 acts nontrivially on H1(F,Z) is interesting but rather
special: see [Su13, Thm. 5.1] for a complete discussion. For most arrangements (in some
sense), then, the Milnor fibre is an abelian duality space.

Nevertheless, even if the monodromy action of h1 on H1(F,Z) is non-trivial, the Milnor
fiber F can still be an abelian duality space. For instance, if A is a pencil of 3 lines in C2,
then the characteristic polynomial of h1 is (1 − t)(1 − t3), yet F (A) = E \ {1, ω, ω2}, where
ω3 = 1, and the claim follows from the discussion in §6.3. It would be interesting to know if
the Milnor fibre of an arrangement is an abelian duality space in general.

We note that, hp acts nontrivially on Hp(F (A),Z) for some p unless A is a decomposable
arrangement and the number of hyperplanes in each block have greatest common divisor 1:
see [Di12]. We also note that other authors consider the (non)triviality of h1 over C rather
than Z; however, we cannot rule out the possibility that H1(F,Z) has torsion: we refer to the
discussion in [DS14]. ♦

The propagation of characteristic varieties we observed for arrangement complements in
Corollary 6.2 implies the following property of monodromy eigenspaces of Milnor fibres. If
ζ ∈ k∗ is an eigenvalue of h on H.(F (A),k) for an algebraically closed field k of characteristic
relatively prime to N , let Hp(F (A),k)ζ denote the corresponding eigenspace.

Theorem 6.9. If A is an arrangement of rank n+ 1 and Hp(F (A),k)ζ 6= 0 for some p < n,
then Hq(F (A),k)ζ 6= 0 as well, for all eigenvalues ζ, and all p ≤ q ≤ n.

Proof. Let δ : π1(U(A))→ Z/NZ denote the classifying map of the cover F (A)→ U(A). If ζ

is a primitive Nth root of unity, let ki = δ̂(ζi). Then we recall that

Hp(F (A),k) =

N−1⊕
i=0

Hp(U(A),ki)

=

N−1⊕
i=0

Hp(F (A),k)ζi

for all p.3 The result then follows from Corollary 6.2. �

3 Alex: Given that we know what χ(F ) is, does this theorem put any new, a priori constraints on what
H.(F (A), k) can be, given that a jump occurs, say, in degree 1? GD: needs control on betti numbers too, I

guess.
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7. Right-angled Artin groups and their relatives

7.1. Polyhedral products. We start by recalling the construction of a ‘generalized moment-
angle complex’ (or, ‘polyhedral product’); for more details, we refer to [DS07, BBCG10, Az13]
and references therein.

Let (X,A) := (Xi, Ai)1≤i≤n be an n-tuple of connected, finite CW-pairs, and let L be a
simplicial complex on vertex set V = [n]. We then set

(33) ZL(X,A) =
⋃
τ∈L

(X,A)τ ,

where (X,A)τ =
∏
i∈VXτ,i, and

(34) Xτ,i =

{
Xi if i ∈ τ ;

Ai if not.

Here, we will mainly be interested in the case when each Ai = ∗ = e0, a distinguished
zero-cell in each Xi. If, moreover, each Xi = X, we write ZL(X, ∗) in place of ZL(X, ∗).

Now let S1 = e0 ∪ e1 be the circle, endowed with the standard cell decomposition. The
resulting polyhedral product, TL = ZL(S1, e0), is a subcomplex of the n-torus Tn. Thus, TL
comes endowed with a minimal cell decomposition. The cohomology ring H.(TL,k) is the
exterior Stanley–Reisner ring k〈L〉, with generators the duals v∗, and relations the monomials
corresponding to the missing faces of L.

The fundamental group GL = π1(TL) is the right-angled Artin group determined by the
graph Γ = L(1), with presentation consisting of a generator v for each vertex v in V, and a
commutator relation vw = wv for each edge {v, w} in Γ. A classifying space for the group
GΓ = GL is the toric complex T∆, where ∆ = ∆L is the flag complex of L, i.e., the maximal
simplicial complex with 1-skeleton equal to the graph Γ.

Both the characteristic and resonance varieties of a toric complex were computed in [PS09].
To state those results, start by identifying H1(TK ,Z) = Zn, with generators indexed by the
vertex set V = [n]. This allows us to identify H1(TL,k) with the vector space kV = kn, and
H1(TL,k×) with the algebraic torus (k×)V = (k×)n. For each subset W ⊆ V, let kW be the
respective coordinate subspace, and let (k×)W be the respective algebraic subtorus.

Theorem 7.1 ([PS09]). With notation as above,

Vid(TL) =
⋃
W

(k×)W and Rid(TL,k) =
⋃
W

kW

where, in both cases, the union is taken over all subsets W ⊂ V for which∑
σ∈LV\W

dimk H̃i−1−|σ|(lkLW
(σ),k) ≥ d.

In the above, LW denotes the simplicial subcomplex induced by L on W, and lkK(σ) denotes
the link of a simplex σ in a subcomplex K ⊆ L. In particular,

(35) V1(GΓ,k) =
⋃
W

(k×)W and R1(GΓ,k) =
⋃
W

kW,

where the union is taken over all maximal subsets W ⊂ V for which the induced graph ΓW is
disconnected.
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7.2. Cohen–Macaulay complexes. Recall that a d-dimensional simplicial complex L is

Cohen–Macaulay if for each simplex σ ∈ L, the reduced cohomology H̃.(lk(σ),Z) is con-
centrated in degree d− |σ| and is torsion-free. The analogous definition can be made over any
coefficient ring k. For a fixed k, the Cohen–Macaulayness of L is a topological property: it

depends only on the homeomorphism type of L. For σ = ∅, the condition means that H̃.(L,Z)
is concentrated in degree d; it also implies that L is pure, i.e., all its maximal simplices have
dimension d.

The Cohen–Macaulay property turns out to be equivalent to duality and abelian duality,
as we see in the next two results.

Theorem 7.2 ([BM01, JM05]). A right-angled Artin group GΓ is a duality group if and only
if the flag complex ∆Γ is Cohen–Macaulay. Moreover, GΓ is a Poincaré duality group if and
only if Γ is a complete graph.

Theorem 7.3. Let L be a d-dimensional complex. Then L is Cohen–Macaulay over k if and
only if the toric complex TL is an abelian duality space (of dimension d+ 1).

Corollary 7.4. A right-angled Artin group GΓ is an abelian duality group if and only if the
flag complex ∆Γ is Cohen–Macaulay.

Proof of Theorem 7.3. Let A = k[Gab
L ], with the natural action of GL. Then A is a free module

over k[Gτ ], for any τ , hence Cohen–Macaulay. So if L is a Cohen–Macaulay complex over k,
Theorem 7.4 of [DSY15] states that Hp(TL, A) = 0 for all p 6= d+ 1, and Hd+1(TL, A) is free,
so TL is an abelian duality space.

To prove the converse, we recall the proof of that result uses a spectral sequence with E2

term given by

(36) Epq2 =
⊕

τ∈L: q=2|τ |

AGτ ⊗k H̃
p+|τ |−1(lkL(τ),k).

This is a spectral sequence of A-modules, and we note that AGτ is has codimension-|τ |, since
it is a quotient of A by a regular sequence of length |τ |. In particular, AGτ is nonzero, so from
(36), L is Cohen–Macaulay over k if and only if Epq2 = 0 whenever p+ q 6= d+ 1.

Now suppose that Hp(TL, A) = 0 for all p 6= d + 1, so Epq∞ = 0 for p + q 6= d + 1. If
L is not Cohen–Macaulay, then, choose the least integer q for which Epq2 6= 0 for some p
where p < d + 1 − q. By our remarks above, Epq2 is an A-module of codimension q/2. Since
Epq∞ = 0, though, Epq2 must be filtered by kernels of differentials dpqr for r ≥ 2. The targets
of such differentials all have strictly higher codimension as A-modules, though, which gives a
contradiction. �

The linearized version behaves in the same way.

Theorem 7.5. The cohomology algebra A = H.(TL,k) has the EPY property if and only if
the complex L is Cohen–Macaulay over k.

Proof. Let n = 1 + dimL, and JL the symmetric Stanley–Reisner ideal. By the construction
of Aramova, Avramov and Herzog [AAH99], A∗(n) has a linear free resolution (over E) for
some n if and only the JL∗(n) has a linear free resolution (over S), where L∗ denotes the
Alexander dual. By the results of Eagon and Reiner [ER98], this is the case if and only if L is
Cohen–Macaulay. �

Remark 7.6. The Cohen–Macaulay property over a field k depends on the characteristic.
For example, if L is a flag triangulation of RP2, then examining the link of the empty simplex



22 G. DENHAM, A. I. SUCIU, AND S. YUZVINSKY

shows L is not Cohen–Macaulay (integrally), though L is Cohen–Macaulay over any field k of
characteristic except 2. It follows from Theorem 7.3 that TL is not an abelian duality space
(integrally), though it is an abelian duality space over a field k with chark 6= 2.

Since TL has dimension 3 andH1(TL,Z) is torsion-free, we conclude in fact thatH2(TL,Z[Gab])
must be a nonzero abelian 2-group.4 Analogously, the EPY property holds except in character-
istic 2, a phenomenon observed first (in the symmetric Stanley-Reisner setting) in [ER98]. ♦

7.3. Propagation. If the simplicial complex L is Cohen–Macaulay, then the characteristic and
resonance varieties of the toric complex TL (and the right-angled Artin group GL) propagate,
by Theorems 5.3 and 3.7.

In view of Theorem 7.1, this has the following, purely combinatorial interpretation.

Corollary 7.7. Let L be a Cohen–Macaulay complex over k. Suppose there is a subset W ⊂ V

of the vertex set and a simplex σ supported on V \W such that H̃i−1−|σ|(lkLW
(σ),k) 6= 0, for

some i ≥ |σ|. Then, for all i ≤ j ≤ dim(L) + 1, there exists a subset W ⊂ W′ ⊂ V and a

simplex σ′ supported on V \W′ such that H̃j−1−|σ′|(lkLW′ (σ
′),k) 6= 0.

Question 7.8. Is there a direct, combinatorial proof of the result above?

As noted in [PS09], the resonance varieties of toric complexes do not always propagate.
For instance, if Γ = Γ1

∐
Γ2, where Γj = Knj are complete graphs on nj ≥ 2 vertices,

j = 1, 2, and GΓ is the corresponding right-angled Artin group, then R1(GΓ,k) = kn1+n2 , yet
Ri(GΓ,k) = kn1 × {0} ∪ {0} × kn2 for 1 < i ≤ min(n1, n2).

Question 7.9. Is there a complex L which is not Cohen–Macaulay but for which the resonance
varieties of TL still propagate?

7.4. More general polyhedral products. Here, we briefly consider groups that arise from
more general parameters in the polyhedral product construction. That is, we let Xi =

∨
ri
S1

for 1 ≤ i ≤ n, and consider the space ZL(X, ∗). This is an instance of the following operadic
construction for polyhedral products, first considered by Ayzenberg in [Az13].

Definition 7.10. Suppose L is a simplicial complex on the vertex set [n], for some n ≥ 1, and
K1, . . . ,Kn are simplicial complexes on disjoint vertex sets V1, . . . , Vn, respectively. We define
the composition L ◦ (K1, . . . ,Kn) to be the simplicial complex with vertices V :=

⋃n
i=1 Vi,

whose simplices are all sets of the form

(37)
⋃

i : i∈τ,
σi∈Ki

σi,

where τ ∈ L. Equivalently, L ◦ (K1, . . . ,Kn) is the union of the simplicial joins Ki1 ? · · · ?Kik

over all simplices τ = {i1, . . . , ik} of L.

Example 7.11. If (j1, . . . , jn) are positive integers and ∆k denotes the k-dimensional simplex,
then L∗ ◦ (∆j1−1, . . . ,∆jn−1) = L(J)∗, where −∗ here denotes Alexander duality, and L(J) is
the simplicial wedge construction introduced in [BBCG10′]. ♦

We will need the following, which is similar to a result of Ayzenberg [Az13, Prop. 5.1]. For
the convenience of the reader, we supply a short, self-contained proof.

4Alex: can we say which group that is, when, say, the triangulation of RP2 is the minimal one (due to

Möbius, I think)? Just curious... GD: should it have finite rank?
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Proposition 7.12. Suppose L and K1, . . . ,Kn are simplicial complexes as above. Suppose
(Xij , Aij) is a pair of (nonempty) finite CW-complexes, for each 1 ≤ i ≤ n and j ∈ Vi. Let
X := (Xij)1≤i≤n,j∈Vi and Xi = (Xij)j∈Vi for each 1 ≤ i ≤ n. Define A and Ai similarly. For
each i, let Yi = ZKi(Xi, Ai), and Bi =

∏
j∈Vi Aij. Then there is a natural homeomorphism of

CW-complexes,

ZL(Y ,B) ∼= ZL◦(K1,...,Kn)(X,A).

Proof. Both spaces are subcomplexes of
∏n
i=1

∏
j∈Vj Xij , constructed as unions of products.

To see they are unions of the same products, consider a simplex S of L ◦ (K1, . . . ,Kn). By
construction, S =

⋃
i∈τ σi for some τ ∈ L and choice of σi ∈ Ki, for each i ∈ τ .

By definition, (X,A)S =
∏
j∈V XS,j , where

(38) XS,j =

{
Xij if j ∈ σi and i ∈ τ ;

Aij if not.

(In the first case, we recall that i is (uniquely) determined by j, since V =
∐
i Vi.)

On the other hand, (Y ,B)τ =
∏n
i=1 Y τ,i, where

(39) Y τ,i =

{
ZKi(Xi, Ai) if i ∈ τ , and

Bi if not.

Note that Y τ,i ⊆
∏
j∈Vi Xij , for each i. Comparing its jth coordinate with (38), we see the

two are equal. �

7.5. Reinterpreting Cohen–Macaulayness. Now we return to the goal of this section.
Given a simplicial complex L with n vertices, let Ki be the zero-dimensional complex with
ri vertices. Let Xi = ZKi(S1, ∗) ∼=

∨
ri
S1. Then Proposition 7.12 shows that ZL(X, ∗) is

homeomorphic to a toric complex on N =
∑n
i=1 ri vertices,

(40) ZL(X, ∗) ∼= ZL◦(K1,...,Kn)(S
1, ∗).

The simplicial complex L(r1, . . . , rn) := L ◦ (K1, . . . ,Kn) is obtained from L by letting Vi
be (disjoint) sets of ri vertices for each i, and declaring S to be a simplex of L̃ if and only if
{i : Vi ∩ S 6= ∅} is a simplex of L of the same dimension as S.

We obtain the following generalization of Theorem 7.3.

Theorem 7.13. The polyhedral product space ZL(X, ∗), where Xi =
∨
ri
S1 for 1 ≤ i ≤ n

and some positive integers r1, . . . , rn, is an abelian duality space if and only if L is Cohen–
Macaulay.

Proof. Following the approach for toric complexes, we cover ZL(X, ∗) with the sets (X, ∗)τ ,
for each τ ∈ L. The inclusion of (X, ∗)τ ∈ ZL(X, ∗) is easily seen to be a retract, so Gτ :=
π1((X, ∗)τ , ∗) is a subgroup of G := π1(ZL(X, ∗), ∗). Each Gτ is a product of free groups,
hence an abelian duality group of dimension |τ |. If A is a Z[G]-module we obtain a spectral
sequence as in [DSY15] with

Epq2 = H̃p+|τ |−1(lkL(τ), Hq−|τ |(Gτ , A)).

Since A = Z[Gab] is a free Z[G]-module, Epq2 = 0 unless q = 2 |τ |. If L is Cohen–Macaulay,
Epq2 = 0 unless p+ |τ | − 1 = d− |τ |. Combining, we see the spectral sequence degenerates at
E2 and gives the desired conclusion.

The converse is proven by the same argument as Theorem 7.3. �
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7.6. Bestvina–Brady groups. Similar questions can be asked about the Bestvina–Brady
groups

(41) NΓ = ker(ν : GΓ → Z),

where ν is the diagonal character, taking each standard generators v ∈ GΓ to 1 ∈ Z. We may
view these groups as fundamental groups of Z-covers of toric complexes which are directly
analogous to the Milnor fibration, viewed as a Z-cover, in the previous section.

Once again, we find that the covers share the duality properties of the base, subject to some
necessary additional hypothesis. As shown by Bestvina and Brady in [BB97], the group NΓ

is of type FP if and only if the flag complex ∆Γ is acyclic, in which case its cohomological
dimension is the dimension of ∆Γ. With this in mind, (classical) duality is characterized by
the following recent result of Davis and Okun.

Proposition 7.14 ([DO12]). Suppose ∆Γ is k-acyclic. Then NΓ is a duality group if and only
if ∆Γ is Cohen–Macaulay over k.

Theorem 7.15. Let Γ be a graph, and ∆Γ its flag complex. Then NΓ is an abelian duality
group if and only if ∆Γ is acyclic and Cohen–Macaulay.

Proof. Suppose ∆Γ is an acyclic flag complex. By [BB97], NΓ is of type FP of dimension
n = dim ∆Γ. In particular, ∆Γ is connected, so, by [PS07, Lem. 3.2], the sequence

(42) 1 // NΓ
// GΓ

// Z // 0

is ab-exact, in the sense of Definition 4.11. Now further suppose that ∆Γ is also Cohen–
Macaulay. Then, by Proposition 7.2, GΓ is an abelian duality group. Hence, by Proposi-
tion 4.13(3), NΓ is also an abelian duality group.

Conversely, suppose NΓ is an abelian duality group. Then NΓ is of type FP, and so ∆Γ must
be acyclic. By Proposition 4.13(1), we see that GΓ is also an abelian duality group, whence
∆Γ is Cohen–Macaulay, by Theorem 7.3. �

Once again, we find that the EPY property follows in step with abelian duality.

Theorem 7.16. If ∆Γ is k-acyclic and Cohen–Macaulay over k, then H.(NΓ,k) has the EPY
property.

Proof. Let L = ∆Γ, so that GΓ = π1(TL), and let NΓ = π1(T̃L), the Z-cover of the toric
complex classified by a =

∑n
i=1 ei ∈ H1(TL,Z). From Theorem 7.1, we note that a 6∈ R1(TL).

Recall that A = H.(TL,k) ∼= E/JL, an exterior Stanley-Reisner ring. Since, by assumption,

H̃.(L,k) = 0, we may apply [PS09, Cor. 7.2] to conclude that the cohomology ring B :=

H.(T̃L,k) is isomorphic to E/(JL+(a)). Multiplication by a gives a surjective homomorphism
of graded E-modules, E/(JL + (a))(1) → (JL + (a))/JL; because a is nonresonant, it is an
isomorphism. This gives an exact sequence of E-modules

0 // B(1) // A // B // 0 ,

hence also

0 // B∗(d) // A∗(d) // B∗(d− 1) // 0 ,

by taking duals and shifting. By hypothesis, A∗(d) is a Koszul module, which is to say

TorEp (A∗(d),k)q is concentrated in degree q = p. By examining the graded long exact sequence

of TorE. (−,k), we see by induction that B∗(d−1) is also a Koszul E-module. A change-of-rings
argument shows that B∗(d − 1) is Koszul as an E/(a)-module as well, which completes the
proof. �
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