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Abstract. In a recent paper, Dimca and Némethi pose the problem of finding

a homogeneous polynomial f such that the homology of the complement of
the hypersurface defined by f is torsion-free, but the homology of the Milnor
fiber of f has torsion. We prove that this is indeed possible, and show by

construction that for each prime p, there is a polynomial with p-torsion in
the homology of the Milnor fiber. The techniques make use of properties of

characteristic varieties of hyperplane arrangements.

1. Introduction

Let f : (C`+1,0)→ (C, 0) be a homogeneous polynomial. Let M = C
`+1\f−1(0)

be the complement of the hypersurface defined by the vanishing of f , and let F =
f−1(1) be the Milnor fiber of the bundle map f : M → C

∗. In [10, Question 3.10],
Dimca and Némethi ask the following.

Question. Suppose the integral homology of M is torsion-free. Is then the integral
homology of F also torsion-free?

The Milnor fiber F has the homotopy type of a finite, `-dimensional CW-
complex. If f has an isolated singularity at 0 (for example, if ` = 1), then F
is homotopic to a bouquet of `-spheres, and so H∗(F ;Z) is torsion-free. The pur-
pose of this paper is to prove the following result, which provides a negative answer
to the above question, as soon as ` > 1.

Theorem 1. Let p be a prime number, and let ` be an integer greater than 1.
Then there is a homogeneous polynomial fp,` : C`+1 → C for which H∗(M ;Z) is
torsion-free, but H1(F ;Z) has p-torsion.

Let x1, . . . , x`+1 be coordinates for C`+1. The theorem is proven by finding
criteria for the construction of such polynomials, then by explicitly exhibiting a
family of 3-variable polynomials fp = fp(x1, x2, x3) with the desired properties, for
all primes p:

(1.1) fp =

{
x1x2(xp1 − x

p
2)2(xp1 − x

p
3)(xp2 − x

p
3), if p is odd,

x2
1x2(x2

1 − x2
2)3(x2

1 − x2
3)2(x2

2 − x2
3), if p = 2.

It then suffices to take fp,`(x1, . . . , x`+1) = fp(x1, x2, x3).
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The above polynomials are all products of powers of linear factors, and so define
multi-arrangements of hyperplanes. See [16] as a general reference on arrangements.
For each prime p, the underlying arrangement Ap is a deletion of the arrangement
associated to the complex reflection group G(3, 1, p), and has defining polynomial
Q(Ap) = x1x2(xp1 − x

p
2)(xp1 − x

p
3)(xp2 − x

p
3). As is well known, for any hyperplane

(multi)-arrangement, the homology groups of the complement are finitely-generated
and torsion-free. Thus, Theorem 1 is a consequence of the following result, which
identifies more precisely the torsion in the homology of the Milnor fiber of the
corresponding multi-arrangement.

Theorem 2. Let Fp = f−1
p (1) be the Milnor fiber of the polynomial defined in

(1.1). Then:

H1(Fp;Z) =

{
Z

3p+1 ⊕ Zp ⊕ T, if p is odd,
Z

3p+1 ⊕ Z2 ⊕ Z2, if p = 2,

where T is a finite abelian group satisfying T⊗Zq = 0 for every prime q, q - 2(2p+1).

The p-torsion in H1(Fp;Z) is the smallest it can be (without being trivial).
Indeed, if H∗(M ;Z) is torsion-free, then an application of the Wang sequence for
the Milnor fibration F →M → C

∗ shows that if the 2-torsion summand of H1(F ;Z)
is non-trivial, then it must contain a repeated factor (compare [10, Prop. 3.11]).

The complement M of a (central) arrangement of n hyperplanes admits a mini-
mal cell decomposition, that is, a cell decomposition for which the number of k-cells
equals the k-th Betti number, for each k ≥ 0, see [18], [11]. On the other hand,
it is not known whether the Milnor fiber of a reduced defining polynomial for the
arrangement admits a minimal cell decomposition. This Milnor fiber does admit a
cell decomposition with n · bk(U) cells of dimension k, where U is the complement
of the projectivized arrangement, see [18]. Our results show that there exist multi-
arrangements for which the Milnor fiber F admits no minimal cell decomposition.
Indeed, by the Morse inequalities, the existence of such a cell decomposition would
rule out torsion in H∗(F ;Z).

This paper is organized as follows. Relevant results concerning finite abelian
covers, characteristic varieties, and Milnor fibrations of multi-arrangements are
reviewed in Sections 2 and 3. Criteria which insure that the homology of the
Milnor fiber of a multi-arrangement has torsion are established in Section 4. Multi-
arrangements arising from deletions of monomial arrangements are studied in Sec-
tions 5 and 6. The proof of Theorem 2 is completed in Section 7.

2. Finite abelian covers and cohomology jumping loci

We start by reviewing some basic facts about finite abelian covers, and how to
derive information about their homology from the stratification of the character
torus of the fundamental group by cohomology jumping loci. A more detailed
treatment in the case of line arrangements may be found in the survey [20].

2.1. Homology of finite abelian covers. Let (X,x0) be a based, connected
space with the homotopy type of a finite CW-complex, and let G = π1(X,x0) be
its fundamental group. Let Y be a finite, regular, abelian cover of X, with deck
transformation group A. Finally, let K be a field, with multiplicative group of units
K
×, and let Ĝ = Hom(G,K×) be the group of K-valued characters of G.
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We shall assume that K is algebraically closed, and that the characteristic of K
does not divide the order of A. With these assumptions, finitely-generated K[A]-
modules are semisimple. Since A is abelian, irreducible representations are one-
dimensional, given by characters χ : A→ K

×. By composing with the map G� A,
we obtain one-dimensional G-modules denoted Kχ.

The lemma below is not new, and its proof can be found in various special cases.
See [12], [19], [14] in the context of 2-complexes; [5] in the context of cyclic covers
of complements of arrangements; and [2] in an algebraic setting. For completeness,
we will sketch a proof of the version needed here.

Lemma 2.2. Let p : Y → X be a finite, regular, abelian cover with group of deck
transformations A, and let K be an algebraically closed field, with charK - |A|.
Then

(2.1) H∗(Y ;K) ∼=
⊕
χ∈Â

H∗(X;Kχ),

where Kχ denotes the rank one local system given by lifting a character χ ∈ Â =
Hom(A,K×) to a representation of G = π1(X,x0). Furthermore, the direct sum-
mand indexed by a character χ is the corresponding isotypic component of H∗(Y ;K)
as a K[A]-module.

Proof. The Leray spectral sequence of the cover p : Y → X degenerates to give an
isomorphism

H∗(Y ;K) ∼= H∗(X;K[A]),

where the action of G on K[A] is induced by left-multiplication of G on A =
π1(X)/p∗(π1(Y )). That is, H∗(Y ;K) is the homology of C∗(Y )⊗K[G]K[A], a chain
complex of A-modules under the right action of A. By our assumptions on K,
all K[A]-modules are semisimple, so the group algebra of A is isomorphic, as an
A-module, to a direct sum of (one-dimensional) irreducibles: K[A] ∼=

⊕
χ∈ÂKχ.

This decomposition into isotypic components commutes with ⊗K[G] and homology,
yielding (2.1). �

2.3. Characteristic varieties. Assume that H1(X;Z) = Gab is torsion-free and
non-zero, and fix an isomorphism α : Gab → Z

n, where n = b1(X). Let K be
an algebraically closed field. The isomorphism α identifies the character variety
Ĝ = Hom(G,K×) with the algebraic torus T(K) = (K×)n.

The cohomology jumping loci, or characteristic varieties, of X are the subvari-
eties Σqd(X,K) of the character torus defined by

(2.2) Σqd(X,K) = {t = (t1, . . . , tn) ∈ (K×)n | dimKHq(X;Kt) ≥ d},

where Kt denotes the rank one local system given by the composite G ab−→ Gab α−→
Z
n t−→ K

×, and the last homomorphism sends the j-th basis element to tj . For fixed
q > 0, these loci determine a (finite) stratification

(K×)n ⊇ Σq1(X,K) ⊇ Σq2(X,K) ⊇ · · · ⊇ ∅.

Define the depth of a character t : G→ K
× relative to this stratification by

depthqX,K(t) = max{d | t ∈ Σqd(X;K)}.
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The varieties Σ1
d(G,K), the jumping loci for 1-dimensional cohomology of the

Eilenberg-MacLane space K(G, 1), are particularly accessible. Indeed, these vari-
eties are the determinantal varieties of the Alexander matrix associated to a (finite)
presentation of G, see for instance [14, Rem. 5.2].

Now assume that H2(X;Z) is also torsion-free, and that the Hurewicz homomor-
phism h : π2(X)→ H2(X) is the zero map. Then H2(X) = H2(G), and this readily
implies Σ1

d(X,K) = Σ1
d(G,K). Thus, we may compute depth

K
(t) := depth1

X,K(t)
directly from the Alexander matrix of G.

2.4. Finite cyclic covers. Consider the case where A = ZN is a cyclic group of
order N . Assume the characteristic of the field K does not divide N , so that the
homomorphism ι : ZN → K

× which sends a generator of ZN to a primitive N -th
root of unity in K is an injection. For a homomorphism λ : G→ ZN , and an integer
j > 0, define a character λj : G→ K

× by λj(g) = ι(λ(g))j .
Let X be a finite CW-complex, with H1(X) and H2(X) torsion-free, and such

that the Hurewicz map h : π2(X) → H2(X) is trivial. In view of the preceding
discussion, Theorem 6.1 in [14] applies as follows.

Corollary 2.5. Let p : Y → X be a regular, N -fold cyclic cover, with classifying
map λ : π1(X)�ZN . Let K be an algebraically closed field, with charK - N . Then

dimKH1(Y ;K) = b1(X) +
∑

1 6=k|N

ϕ(k) depth
K

(
λN/k

)
,

where ϕ is the Euler totient function.

This result was first used in [14] to detect 2-torsion in the homology of certain
3-fold covers of the complement of the deleted B3 arrangement (see §7.3 below).
We will apply this result to Milnor fibrations in what follows.

3. Homology of the Milnor fiber of a multi-arrangement

In this section, we review some facts concerning the Milnor fibration of a complex
(multi)-arrangement of hyperplanes, following [5] and [9].

3.1. Hyperplane arrangements. Let A be a central arrangement of hyperplanes
in C`+1. The union of the hyperplanes in A is the zero locus of a polynomial

f = Q(A) =
∏
H∈A

αH ,

where each factor αH is a linear form with kernel H. Let C∗ → C
`+1 \ {0} → CP

`

be the Hopf bundle, with fiber C∗ = C\{0}. The projection map of this (principal)
bundle takes the complement of the arrangement, M = M(A) = C

`+1 \ f−1(0), to
the complement U of the projectivization of A in CP`. The bundle splits over U ,
and so M = U × C∗.

It is well known that U is homotopy equivalent to a finite CW-complex (of
dimension at most `), and that H∗(U ;Z) is torsion-free. Furthermore, for each
k ≥ 2, the Hurewicz homomorphism h : πk(U) → Hk(U) is the zero map, see [17].
Thus, the assumptions from §2.4 hold for X = U .

The fundamental group π1(M) is generated by meridian loops (positively ori-
ented linking circles) about the hyperplanes of A. The homology classes of these
loops freely generate H1(M) = Z

n, where n = deg(f) = |A|. We shall abuse no-
tation and denote both a meridian loop about hyperplane H ∈ A, and its image
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in π1(U) by the same symbol, γH . Note that these meridians may be chosen so
that

∏
H∈A γH is null-homotopic in U . In fact, π1(U) ∼= π1(M)/〈

∏
H∈A γH〉, and

so H1(U) = π1(U)ab = Z
n−1.

3.2. The Milnor fibration. As shown by Milnor, the restriction of f : C`+1 → C

to M defines a smooth fibration f : M → C
∗, with fiber F = f−1(1) and mon-

odromy h : F → F given by multiplication by a primitive n-th root of unity in C.
The restriction of the Hopf map to the Milnor fiber gives rise to an n-fold cyclic

covering F → U . This covering is classified by the epimorphism λ : π1(U)�Zn that
sends all meridians γH to the same generator of Zn. See [5] for details.

Now fix an ordering A = {H1,H2, . . . ,Hn} on the set of hyperplanes. Let
a = (a1, a2, . . . , an) be an n-tuple of positive integers with greatest common divisor
equal to 1. We call such an n-tuple a choice of multiplicities for A. The (unreduced)
polynomial

fa =
n∏
i=1

αaiHi

defines a multi-arrangement Aa =
{
H

(1)
1 , . . . ,H

(a1)
1 , . . . ,H

(1)
n , . . . ,H

(an)
n

}
. Note

that Aa has the same complement M , and projective complement U , as A, for any
choice of multiplicities. Let fa : M → C

∗ be the corresponding Milnor fibration.
As we shall see, the fiber Fa = f−1

a (1) does depend significantly on a.

3.3. Homology of the Milnor fiber. Let N =
∑n
i=1 ai be the degree of fa, and

let ZN = 〈g | gN = 1〉 be the cyclic group of order N , with fixed generator g. As
in the reduced case above, the restriction of the Hopf map to Fa gives rise to an
N -fold cyclic covering Fa → U , classified by the homomorphism λa : π1(U)�ZN
which sends the meridian γi about Hi to gai .

For any field K, let τ : (K×)n → K
× be the map which sends an n-tuple of

elements to their product. Since the meridians γi may be chosen so that
∏n
i=1 γi =

1, if s ∈ (K×)n satisfies τ(s) = 1, then s gives rise to a rank one local system on U ,
compare §2.3. We abuse notation and denote this local system by Ks.

Suppose that K is algebraically closed, and charK does not divide N . Then
there is a primitive N -th root of unity ξ ∈ K. Let t ∈ (K×)n be the character
with ti = ξai , for 1 ≤ i ≤ n. Note that τ(t) = 1. Let ha : Fa → Fa be the
geometric monodromy of the Milnor fibration fa : M → C

∗, given by multiplying
coordinates in C`+1 by a primitive N -th root of unity in C. The action of the
algebraic monodromy (ha)∗ : H∗(Fa;K) → H∗(Fa;K) coincides with that of the
deck transformations of the covering Fa → U . Lemma 2.2 yields the following.

Lemma 3.4. With notation as above, we have

H∗(Fa;K) =
N−1⊕
k=0

H∗(U ;Ktk).

Furthermore, the k-th summand is an eigenspace for (ha)∗ with eigenvalue ξk.

The next lemma appeared in [9] in the complex case. For convenience, we re-
produce the proof in general.

Lemma 3.5. Let K be an algebraically closed field, and let s ∈ (K×)n be an element
of finite order, with τ(s) = 1. Then there exists a choice of multiplicities a for A
so that Hq(U ;Ks) is a monodromy eigenspace of Hq(Fa;K).
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Proof. Let ζ ∈ K be a primitive k-th root of unity, where k is the order of s. Then,
for each 2 ≤ i ≤ n, there is an integer 1 ≤ ai ≤ k such that si = ζai . By choosing
either 1 ≤ a1 ≤ k or k + 1 ≤ a1 ≤ 2k suitably, we can arrange that the sum
N =

∑n
i=1 ai is not divisible by p = charK, if p > 0. Since s and ζ both have order

k, we have gcd {a1, . . . , an} = 1. Since the product of the coordinates of s is 1, the
integer k divides N .

By insuring p - N , there is an element ξ ∈ K for which ξN/k = ζ. By construction,
a = (a1, . . . , an) is a choice of multiplicities for which s = tN/k in the decomposition
of Lemma 3.4, so Hq(U ;Ks) is a direct summand of Hq(Fa;K). �

Remark 3.6. The choice of multiplicities a in Lemma 3.5 is not unique. As above,
write si = ζai for integers ai, where ζ is a k-th root of unity and 1 ≤ ai ≤ k.
Let a = (a1, . . . , an). Then Hq(U ;Ks) is also a monodromy eigenspace of Fb if
b = a + λ, for all λ ∈ (kZ)n for which satisfy bi > 0 for each i and, if p > 0,
p -
∑n
i=1 bi.

4. Translated tori and torsion in homology

4.1. Characteristic varieties of arrangements. Let A = {H1, . . . ,Hn} be a
central arrangement in C`+1. Let M denote its complement, and U the complement
of its projectivization. Then the restriction of the Hopf fibration C∗ → M → U
induces an isomorphism π1(U) ∼= π1(M)/ 〈

∏n
i=1 γi〉, as in the previous section. For

this reason, although the rank of π1(U)ab is n−1, we shall regard the characteristic
varieties of U as embedded in the character torus of π1(M):

(4.1) Σqd(U,K) =
{
t ∈ ker τ ∼= (K×)n−1 | dimKHq(U ;Kt) ≥ d

}
,

(compare with (2.2)), where, as above, τ : (K×)n → K
× is the homomorphism given

by τ(t1, . . . , tn) = t1 · · · tn.

Proposition 4.2. For q ≥ 1 and d ≥ 0,

Σqd(M,K) =
d⋃
j=0

Σqd−j(U,K) ∩ Σq−1
j (U,K).

In particular, for t ∈ ker τ , we have

depthqM,K(t) = depthqU,K(t) + depthq−1
U,K (t).

Proof. Let Kt be the local system on M corresponding to t ∈ (K×)n. There is an
induced local system i∗Kt on C∗, with monodromy τ(t), where i : C∗ → M is the
inclusion of the fiber in the Hopf bundle C∗ →M → U . Fix a section s : U →M of
this trivial bundle, and let s∗Kt be the induced local system on U . Recall that we
denote this local system by Kt in the case where τ(t) = 1. To prove the Proposition,
it suffices to show that, for each q ≥ 1,

Hq(M ;Kt) =

{
0, if τ(t) 6= 1,
Hq(U ;Kt)⊕Hq−1(U ;Kt), if τ(t) = 1.

Let C•(M̃) and C•(Ũ) be the chain complexes of the universal covers of M
and U , viewed as modules over the group rings of Ḡ = π1(M) and G = π1(U),
respectively. Then the cohomology of M with coefficients in Kt is (by definition)
the cohomology of the complex C̄

• = Hom
ZḠ(C•(M̃),K), where the ZḠ-module
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structure on K is given by the representation Ḡ
ab−→ Ḡab α−→ Z

n t−→ K
×. Similarly,

H∗(U ; s∗Kt) is the cohomology of the complex C• = HomZG(C•(Ũ),K). Denote
the boundary maps of the complexes C̄• and C• by ∆• and δ•, respectively.

Multiplication by 1−τ(t) gives rise to a chain map C• → C•. Since M = U ×C∗
is a product, and the monodromy of the induced local system i∗Kt on C∗ is τ(t),
the complex C̄• may be realized as the mapping cone of this chain map. Explicitly,
we have C̄q = Cq ⊕ Cq−1, and ∆q : Cq ⊕ Cq−1 → Cq+1 ⊕ Cq is given by

∆q(x, y) =
(
δq(x), δq−1(y) + (−1)q(1− τ(t)) · x

)
.

If τ(t) 6= 1, it is readily checked that the complex C̄• is acyclic. If τ(t) = 1,
it follows immediately from the above description of the boundary map ∆• that
Hq(C̄•) ∼= Hq(C•)⊕Hq−1(C•) for each q. �

Now let dA be the decone of A with respect to one of the hyperplanes (which,
after a linear change of variables, may be assumed to be a coordinate hyperplane).
The complement, M(dA), in C` is diffeomorphic to the complement U of the pro-
jectivization of A. An isomorphism π1(U) → π1(M(dA)) is obtained by deleting
the meridian corresponding to the deconing hyperplane. Let π : (K×)n → (K×)n−1

be the map that forgets the corresponding coordinate. Then π induces a bijection
π] : Σqd(U,K)→ Σqd(M(dA),K).

If s is a nontrivial character, then H0(U,Ks) = 0 and depth1
U,K(s) < n − 1.

Consequently, as shown in [8] using properties of Fitting ideals, for q = 1 and
d < n, the above proposition simplifies to:

(4.2) Σ1
d(M(A),K) =

{
t ∈ (K×)n | π(t) ∈ Σ1

d(M(dA),K) and τ(t) = 1
}
.

Each irreducible component of Σqd(U,C) (resp., Σqd(M(dA),C)) is a torsion-
translated subtorus of the algebraic torus T(C) = (C×)n, see [1]. That is, each
component of Σqd(U,C) is of the form gT , where T is a subgroup of T(C) isomor-
phic to a product of 0 or more copies of C×, and g ∈ T(C) is of finite order. Recall
that every algebraic subgroup of T(K) can be written as the product of a finite
group with a subtorus [15, p. 187]. If the order of an element g ∈ T(K) is finite,
we will denote its order by ord(g).

4.3. Jumping loci and the Milnor fibration. Write Hi = ker(αi) and let
fa =

∏n
i=1 α

ai
i be the polynomial of degree N =

∑n
i=1 ai corresponding to a

choice of multiplicities a = (a1, . . . , an) for A. Recall that Fa, the Milnor fiber
of fa : M → C

∗, is the regular, N -fold cyclic cover of U classified by the homomor-
phism λa : π1(U)�ZN given by λa(γi) = gai . Recall also that b1(U) = |A| − 1 =
n− 1. From Corollary 2.5, we obtain the following.

Theorem 4.4. Let K be an algebraically closed field, with charK - N . Then

dimKH1(Fa;K) = n− 1 +
∑

1 6=k|N

ϕ(k) depth
K

(
λN/ka

)
.

4.5. Jumping loci in different characteristics. Our goal for the rest of this
section is to show that if a translated torus gT is a positive-dimensional component
of a characteristic variety Σqd(U,C), but T itself is not a component, then there exist
choices of multiplicities a for which Hq(Fa;Z) has integer torsion (Theorem 4.11).
In fact, we will describe how to choose such exponents explicitly, and give a more
general criterion for the existence of torsion (Theorem 4.9).
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We start by comparing representations of the fundamental group over fields of
positive characteristic with those over C. Let ζ be a root of unity, and denote by
Z[ζ] the ring of cyclotomic integers.

Lemma 4.6. Let i : Z[ζ] → C and j : Z[ζ] → K be ring homomorphisms, and
assume that i is an injection. For any t ∈ (Z[ζ]×)n with τ(t) = 1, let i∗t and j∗t
denote the images of t in T(C) and T(K), respectively. Then

dimCHq(U ;Ci∗t) ≤ dimKHq(U ;Kj∗t).

Proof. Since the character t satisfies τ(t) = 1, it gives rise to a homomorphism
ψ : ZG → Z[ζ], where G = π1(U) and ZG is the integral group ring. Let K∗ =
C∗(Ũ) ⊗ψ Z[ζ] denote the corresponding tensor product of the chain complex of
the universal cover of U with Z[ζ], a chain complex of Z[ζ]-modules. Then the
homology groups under comparison are just those of K∗ ⊗i∗t C and K∗ ⊗j∗t K,
respectively. Since the first map i is flat, the inequality follows. �

Lemma 4.7. Given an arrangement A and positive integers q, d, the following two
statements are equivalent.

(1) The characteristic variety Σqd(U,C) contains an element g of finite order
for which the cyclic subgroup 〈g〉 6⊆ Σqd(U,C). Moreover, there exists h ∈
〈g〉 \ Σqd(U,C) and a prime p with p | ord(g) but p - ord(h).

(2) There exist s, t ∈ T(C), a prime p, and integer r ≥ 1 for which
(a) depthqU,C(t) < depthqU,C(s) = d;
(b) ord(st−1) = pr;
(c) p - ord(t).

Proof. (1)⇒ (2): Write 〈g〉 ∼=
⊕m

i=1 Z/(p
ri
i Z), where the primes p1, p2, . . . , pm are

all distinct. For each h ∈ 〈g〉, define an m-tuple ν(h) as follows: for 1 ≤ i ≤ m, let
ν(h)i = ai, where the projection of h to Z/(prii Z) has order paii . Clearly 0 ≤ ai ≤ ri.

Let S consist of those elements h ∈ 〈g〉 for which h ∈ Σqd(U,C). Since character-
istic varieties are closed under cyclotomic Galois actions, two elements h1, h2 ∈ 〈g〉
of the same order are either both in S or both not in S. By reordering the pi’s,
our hypothesis states that there exists h /∈ S with ν(h) = (a1, . . . , aj , 0, . . . , 0), for
some nonzero integers a1, a2, . . . , aj , where j < m. Choose h /∈ S of this form for
which j is minimal. Since 1 ∈ S and ν(1) = (0, 0, . . . , 0), we have j ≥ 1. Then
for some h′ ∈ 〈g〉 of order prj−ajj , we have ν(hh′) = (a1, . . . , aj−1, 0, 0, . . . , 0). By
minimality, hh′ ∈ S. Then the pair of t = h and s = hh′ together with p = pr,
r = rj − aj satisfy the conditions (2).

(2) ⇒ (1): Let g = s, h = t, and h′ = gh−1. By hypothesis, ord(hh′) =
ord(h) ord(h′), from which it follows that 〈g〉 = 〈hh′〉 = 〈h, h′〉. In particular,
h ∈ 〈g〉, but by (a), h /∈ Σqd(U,C). �

4.8. Torsion jumps. Once again, let K be an algebraically closed field of positive
characteristic p.

Theorem 4.9. If A is an arrangement for which the characteristic variety Σqd(U,C)
satisfies the equivalent conditions of Lemma 4.7, then dimKHq(U ;Kt) ≥ d.

Proof. Let k = ord(t); from condition (2), parts (b) and (c), we have ord(s) = prk.
Let ζ be a root of unity in C of order prk, so that s, t ∈ (Z[ζ]×)n. Let j : Z[ζ]→ K
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be given by choosing a k-th root of unity j(ζ) in K. Since ord(st−1) is a power of
the characteristic of K, we have j∗g = j∗h. Then

dimKHq(U ;Kj∗t) = dimKHq(U ;Kj∗s) ≥ d ,
by condition (2)(a) and Lemma 4.6. �

Corollary 4.10. Suppose A is an arrangement for which the characteristic variety
Σqd(U,C) satisfies the equivalent conditions of Lemma 4.7. Then there is a choice
of multiplicities a for A for which the group Hq(Fa;Z) contains p-torsion elements.

Proof. Assume that t ∈ T(C) satisfies condition (2)(a) of Lemma 4.7. Then, since
t 6∈ Σqd(U,C), we have dimCHq(U ;Ct) < dimKHq(U ;Kt). By Lemma 3.5, there
exists a choice of multiplicities a for whichHq(U ;Kt) andHq(U ;Ct) are monodromy
eigenspaces. Using Lemmas 3.4 and 4.6, with one of the inequalities being strict,
we find that dimCHq(Fa;C) < dimKHq(Fa;K). The result follows. �

The following statement is a special case of Theorem 4.9 that applies to some
specific behavior observed in characteristic varieties (see [21] and [4]). In particular,
we will use it in what follows to find torsion for our family of examples.

Theorem 4.11. Let sT be a component of Σqd(U,C), where T is a subtorus of T(C)
and s is a finite-order element in T(C). Suppose that T 6⊆ Σqd(U,C). Then there
exist choices of multiplicities a for A for which the group Hq(Fa;Z) has p-torsion,
for some prime p dividing ord(s).

Proof. First, note that T is positive-dimensional, since 1 is contained in all non-
empty characteristic varieties. Since T is not contained in Σqd(U,C), there exist
infinitely many finite-order elements h ∈ T for which h 6∈ Σqd(U,C). (In fact,
for each sufficiently large integer k, there exist elements h with ord(h) = k and
h /∈ Σqd(U,C).)

Choose any element h as above, of order relatively prime to that of s, and let
u = hr for an r for which uord(s) = h. Let g = su. Then, by construction, g and h
satisfy the first condition of Lemma 4.7. By Corollary 4.10, Hq(Fa;Z) has torsion
of order p for those a given by Lemma 3.5. �

5. Deletions of monomial arrangements

Now we turn to a detailed study of arrangements obtained by deleting a hy-
perplane from a monomial arrangement. Using results from [21] and [4], we check
that these arrangements satisfy the hypotheses of Theorem 4.11. Hence, there are
corresponding multi-arrangements whose Milnor fibers have torsion in homology.

5.1. Fundamental group of the complement. Let Ap be the arrangement in
C

3 with defining polynomial Q(Ap) = x1x2(xp1 − xp2)(xp1 − xp3)(xp2 − xp3). This
arrangement is obtained by deleting the hyperplane x3 = 0 from the complex
reflection arrangement associated to the full monomial group G(3, 1, p).

The projection C3 → C
2 defined by (x1, x2, x3) 7→ (x1, x2) restricts to a bundle

map M(Ap) → M(B), where B is defined by Q(B) = x1x2(xp1 − x
p
2). The fiber

of this bundle is the complex line with 2p points removed. Thus, Ap is a fiber-
type arrangement, with exponents (1, p + 1, 2p). Hence, the fundamental group
G(Ap) = π1(M(Ap)) may be realized as a semidirect product

(5.1) G(Ap) = F2p oα G(B),
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Figure 1. The braids ρ0 and ρ1, for p = 3

where F2p = π1(C \ {2p points}) is free on 2p generators corresponding to the
hyperplanes defined by (xp1−x

p
3)(xp2−x

p
3), and G(B) ∼= Fp+1×Z is the fundamental

group of M(B).
The monodromy α : G(B) → Aut(F2p) which defines the semidirect product

structure (5.1) factors as G(B)
η−→ P2p ↪→ Aut(F2p), where the inclusion of the

pure braid group on 2p strands P2p in Aut(F2p) is given by the restriction of the
Artin representation. The “braid monodromy” η : G(B)→ P2p may be determined
using the techniques of [6], [7], and [3]. In fact, this map may be obtained by an
appropriate modification of the calculation in [3, §2.2] of the braid monodromy of
the full monomial arrangement defined by x3Q(Ap), which we now carry out.

5.2. Braid monodromy. Fix a primitive p-th root of unity ξ ∈ C. Let B2p be the
full braid group on 2p strands, and let σi, 1 ≤ i ≤ 2p−1 be the standard generators.
The indices of the strands correspond to the hyperplanes Hi3:r = ker(xi − ξrx3)
and the generators y1, . . . , y2p of F2p, as indicated below:

strand # 1 2 · · · p p+ 1 p+ 2 · · · 2p
hyperplane H13:p H13:p−1 · · · H13:1 H23:p H23:p−1 · · · H23:1

generator y1 y2 · · · yp yp+1 yp+2 · · · y2p

Define braids ρ0, ρ1 ∈ B2p by

ρ0 = σp−1σp−2 · · ·σ1 and ρ1 = τ−1σ1σ3 · · ·σ2p−3σ2p−1τ,

where

(5.2) τ = (σ2σ4 · · ·σ2p−2)(σ3σ5 · · ·σ2p−3) · · · (σp−2σpσp+2)(σp−1σp+1)(σp),

see Figure 1. The braids ρi are obtained from the “monomial braids” of [3] by
deleting the central strand, corresponding to the hyperplane H3 = ker(x3) in the
full monomial arrangement, but not in the monomial deletion. As in [3], the braid
monodromy η : G(B)→ P2p may be expressed in terms of these braids, as follows.

Define pure braids Z1, Z2, A
(1)
1,2, . . . , A

(p)
1,2 in P2p by Z1 = ρp0, Z2 = ρ1ρ

p
0ρ
−1
1 , and

A
(r)
1,2 = ρr−p0 ρ2

1ρ
p−r
0 for 1 ≤ r ≤ p. Let γj and γ12:r be meridian loops in M(B)

about the lines Hj = ker(xj) and H12:r = ker(x1− ξrx2). These loops generate the
fundamental group G(B).

Proposition 5.3. The braid monodromy η : G(B)→ P2p of the bundle M(Ap)→
M(B) is given by η(γj) = Zj, η(γ12:r) = A

(r)
1,2.

Corollary 5.4. The fundamental group of M(Ap) has presentation

G(Ap) =

〈
γ1, γ2, γ12:1, . . . , γ12:p

y1, y2, y3, . . . , y2p

∣∣∣∣ γ−1
j yiγj = η(γj)(yi)

γ−1
12:ryiγ12:r = η(γ12:r)(yi)

〉
,
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where i = 1, . . . , 2p, j = 1, 2, and r = 1, . . . , p, and the pure braids η(γ) act on the
free group F2p = 〈y1, . . . , y2p〉 by the Artin representation.

5.5. Fundamental group of the decone. Let Γ = γ1γ12:1 · · · γ12:p−1γ2γ12:p ∈
G(B). Note that η(Γ) = A[2p] is the full twist on all strands. As is well known, this
braid generates the center of P2p. It follows that Γ is central in G(B), so

G(B) = Fp+1 × Z = 〈γ1, γ12:1, . . . , γ12:p〉 × 〈Γ〉.
To simplify calculations in §6 below, we will work with an explicit decone of the

arrangement Ap, as opposed to the projectization. Let dAp denote the decone of
Ap with respect to the hyperplane H2 = ker(x2). This is an affine arrangement in
C

2 (with coordinates x1, x3), defined by Q(dAp) = x1(xp1 − 1)(xp1 − x
p
3)(1 − xp3).

From the above discussion, we obtain the following presentation for the fundamental
group of the complement of dAp:

(5.3) G(dAp) =

〈
γ1, γ12:1, . . . , γ12:p

y1, y2, . . . , y2p

∣∣∣∣ γ−1
1 yiγ1 = η(γ1)(yi)

γ−1
12:ryiγ12:r = η(γ12:r)(yi)

〉
.

where, as before, i = 1, . . . , 2p and r = 1, . . . , p.

5.6. Characteristic varieties. Set n = 3p + 2 = |Ap|. Denote the coordinates
of the algebraic torus (K×)n by z1, z2, z12:1, . . . , z12:p, z13:1, . . . , z13:p, z23:1, . . . , z23:p,
where zi corresponds to the hyperplane Hi = ker(xi) and zij:r to the hyperplane
Hij:r = ker(xi − ξrxj).

The following theorem was proved for p = 2 in [21], and for p ≥ 2 in [4], in the
case K = C. The same proofs work for an arbitrary, algebraically closed field K.

Theorem 5.7. In addition to components of dimension 2 or higher, the variety
Σ1

1(M(Ap),K) has 1-dimensional components C1, . . . , Cp−1, given by
p−1⋃
i=1

Ci =

{
(up, vp, w, . . . , w, v, . . . , v, u, . . . , u) ∈ (K×)n

∣∣∣∣ wp−1 + · · ·+ w + 1 = 0
and uvw = 1

}
.

If charK = p, then Ci is a subtorus of (K×)n, so passes through the origin 1.
However, if charK 6= p, then Ci is a subtorus translated by a character of order
p. The results of §4.8 imply that there exist choices of multiplicities a for Ap such
that the first homology group of the corresponding Milnor fiber, Fa, has p-torsion.
In particular, we have the following.

Corollary 5.8. Let Fp = f−1
p (1) be the Milnor fiber of the polynomial defined in

(1.1). Then H1(Fp;Z) has p-torsion.

Proof. Let U = M(dAp) be the complement of the projectivization of Ap. Note
that for t ∈ Ci, we have τ(t) = 1. So Ci ⊂ Σ1

1(U,K) by Proposition 4.2. In the
case K = C, let si =

(
1, 1, ξi, . . . , ξi, ξ−i, . . . , ξ−i, 1, . . . , 1

)
. where ξ = exp(2π i /p),

and
T = {

(
up, vp, 1, . . . , 1, v, . . . , v, u, . . . , u

)
∈ (C×)n | uv = 1}.

Then ord(si) = p, T is a one-dimensional subtorus of (C×)n, and Ci = siT . One
can check that T 6⊆ Σ1

1(U,C) using known properites of characteristic varieties of
arrangements, see [13]. Hence, Theorem 4.11 implies that there are choices of multi-
plicities a for Ap for which H1(Fa;Z) has p-torsion. Arguing as in the proof of that
theorem, and using Lemma 3.5, reveals that among these choices of multiplicities are
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a = (2, 1, 3, 3, 2, 2, 1, 1) in the case p = 2, and a = (1, 1, 2, . . . , 2, 1, . . . , 1, 1, . . . , 1)
in the case p 6= 2. These choices yield the polynomials fp of (1.1). �

6. Homology calculations

Keeping the notation from the previous section, we analyze the homology of
G(dAp) = π1(M(dAp)) with coefficients in the rank one local systems that arise in
the study of the Milnor fibration fp : M(Ap)→ C

∗. In this section, we consider the
case where p 6= 2 is an odd prime.

Let K be an algebraically closed field. Recall that dAp is the decone of Ap with
respect to the hyperplane H2 = ker(x2), which has multiplicity 1 in the multi-
arrangement defined by fp. Consequently, to analyze the homology of the Milnor
fiber Fp using Theorem 4.4, we will consider the modules Kt(k) corresponding to
characters t(k) defined by

(6.1) t(k) = (t, t2, . . . , t2, t, . . . , t, t, . . . , t) ∈ (K×)n−1,

where t = ζN/k is a power of a primitive N -th root of unity, N = 4p + 2, k 6= 1 is
a positive integer dividing N , and n = 3p+ 2.

Proposition 6.1. If k 6= 2 and charK - N , then H1(G(dAp);Kt(k)) = 0.

Proof. The braid Z1 = η(γ1) is a full twist on strands 1 through p, given in terms of
the standard generators Ai,j of P2p by Z1 = A1,2(A1,3A2,3) · · · · · · (A1,p · · ·Ap−1,p).
Consider the generating set {u1, . . . , up, v1, . . . , vp} for the free group F2p given by
ur = y1y2 · · · yr and vr = yp+r, 1 ≤ r ≤ p. The action of the braid Z1 on this
generating set is given by Z1(ui) = upuiu

−1
p and Z1(vj) = vj for 1 ≤ i, j ≤ p, see

[7, §6.4].
Taking γ1, γ12:r, ur, vr (1 ≤ r ≤ p) as generators for G(dAp), we obtain from

(5.3) a presentation with relations

uiγ1up = γ1upui, upγ1 = γ1up, vjγ1 = γ1vj ,

ujγ12:r = γ12:rA
(r)
1,2(uj), vjγ12:r = γ12:rA

(r)
1,2(vj),

where 1 ≤ i ≤ p− 1, 1 ≤ j ≤ p, and 1 ≤ r ≤ p.
Let A denote the Alexander matrix obtained from this presentation by taking

Fox derivatives and abelianizing. This is a 2p(p+ 1)× (3p+ 1) matrix with entries
in the ring of Laurent polynomials in the variables γ1, γ12:r, ur, vr, and has the form

A =



∆ 0 · · · 0 0 I2p − γ1Θ(Z1)
0 ∆ 0 0 I2p − γ12:1Θ(A(1)

1,2)
...

. . .
...

0 0 ∆ 0 I2p − γ12:p−1Θ(A(p−1)
1,2 )

0 0 · · · 0 ∆ I2p − γ12:pΘ(A(p)
1,2)

 ,

where ∆ is the column vector (u1 − 1, . . . , up − 1, v1 − 1, . . . , vp − 1)>, Im is the
m×m identity matrix, and Θ: P2p → GL(2p,Z[u±1

1 , . . . , u±1
p , v±1

1 , . . . , v±1
p ]) is the

Gassner representation.
Let A(k) denote the evaluation of the Alexander matrix at the character t(k).

This evaluation is given by γ1 7→ t, γ12:r 7→ t2, yi 7→ t, so ur 7→ tr and vr 7→ t. To
show that H1(G(dAp);Kt(k)) = 0, it suffices to show that A(k) has rank 3p.
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A calculation (compare [7, Prop. 6.6]) reveals that the evaluation at t(k) of
I2p − γ1Θ(Z1) is upper triangular, with diagonal entries 1− tp+1 and 1− t. Recall
that ζ is a primitive N -th root of unity, where N = 4p + 2, that k 6= 1 divides
N , and that t = ζN/k. Since p is prime and k 6= 2 by hypothesis, k does not
divide p + 1. Consequently, all of the diagonal entries of the evaluation at t(k) of
I2p − γ1Θ(Z1) are nonzero. It follows that rank A(k) = 3p. �

For the character t(2) = (−1, 1, . . . , 1,−1, . . . ,−1,−1, . . . ,−1), and the corre-
sponding module Kt(2), there are several cases to consider.

First, note that if charK = 2, then t(2) = 1 is the trivial character.
If charK = p, Theorem 5.7 and equation (4.2) combine to show that t(2) ∈

Σ1
1(M(dAp),K). Moreover, t(2) 6= 1, since p 6= 2. Hence, in this case the depth of

t(2) is at least 1.
If charK 6= 2 or p, one can show that the character t(2) does not lie in any

component of Σ1
1(M(dAp),K) of positive dimension. However, this does not rule

out the possibility that t(2) is an isolated point in Σ1
1(M(dAp),K). This is not the

case, as the next result shows.

Proposition 6.2. Let K be an algebraically closed field. If charK = p, then
depth

K
(t(2)) = 1. If charK 6= 2 or p, then depth

K
(t(2)) = 0.

We will sketch a proof of this proposition by means of a sequence of lemmas. As
above, we will analyze the Alexander matrix arising from a well-chosen presentation
of the group G(dAp).

The presentation of G(dAp) given in (5.3) is obtained from the realization of
this group as a semidirect product, G(dAp) = F2p oα Fp+1. The homomorphism
α : Fp+1 → Aut(F2p) is the composition of the Artin representation with the braid
monodromy η : Fp+1 → P2p given by η : γ1 7→ Z1, γ12:r 7→ A

(r)
1,2. We first modify

the map η, as follows.
Recall the braid τ ∈ B2p from (5.2). Conjugation by τ induces an automor-

phism congτ : P2p → P2p, β 7→ τβτ−1. Then, congτ ◦η : Fp+1 → P2p is another
choice of braid monodromy for the (fiber-type) arrangement dAp, and the presen-
tation of G(dAp) resulting from composing congτ ◦η and the Artin representation
is equivalent to that obtained from α.

Lemma 6.3. In terms of the standard generating set for the pure braid group P2p,
the braids congτ (A(p)

1,2) and congτ (Z1) are given by

congτ
(
A

(p)
1,2

)
= A1,2A3,4 · · ·A2p−1,2p,

congτ (Z1) = A1,3(A1,5A3,5) · · · (A1,2p−1A3,2p−1 · · ·A2p−3,2p−1).

Proof. Recall that A
(r)
1,2 = ρr−p0 ρ2

1ρ
p−r
0 , where ρ0 = σp−1σp−2 · · ·σ1 and ρ1 =

τ−1σ1σ3 · · ·σ2p−1τ . Hence, congτ (A(p)
1,2) = σ2

1σ
2
3 · · ·σ2

2p−1 = A1,2A3,4 · · ·A2p−1,2p.
Also recall that Z1 = A[p] = A1,2(A1,3A2,3) · · · · · · (A1,pA2,p · · ·Ap−1,p) is the full
twist on strands 1 through p. We will show that congτ (Z1) is as asserted (for any
integer p ≥ 2) by induction on p.

Write τ = τp. In the case p = 2, we have τ2A[2]τ
−1
2 = σ2σ

2
1σ
−1
2 = A1,3. So induc-

tively assume that τpA[p]τ
−1
p = AO[p], where O[p] = {1, 3, . . . , 2p− 1}. Using (5.2)

and the braid relations, we have τp+1 = τpβp+1, where βp+1 = σ2pσ2p−1 · · ·σp+1.



14 D. C. COHEN, G. DENHAM, AND A. I. SUCIU

Note that βp+1 commutes with A[p]. Hence,

τp+1A[p+1]τ
−1
p+1 = τpβp+1A[p](A1,p+1A2,p+1 · · ·Ap,p+1)β−1

p+1τ
−1
p

= τpA[p]τ
−1
p · τpβp+1(A1,p+1A2,p+1 · · ·Ap,p+1)β−1

p+1τ
−1
p

= AO[p] · τpβp+1(A1,p+1A2,p+1 · · ·Ap,p+1)β−1
p+1τ

−1
p

= AO[p] · τp(A1,2p+1A2,2p+1 · · ·Ap,2p+1)τ−1
p

by induction, and the readily checked fact that βp+1Ai,p+1β
−1
p+1 = Ai,2p+1. The

result now follows from the equality τpAi,2p+1τ
−1
p = A2i−1,2p+1, which may itself

be established by an inductive argument. �

Write z = congτ (Z1) and a = congτ (A(p)
1,2). We specify a generating set for the

free group F2p = 〈y1, . . . , y2p〉 for which the action of these braids is tractable. For
1 ≤ r ≤ p, let ur = y1y2 · · · y2r−1y2r and vr = y2r−1. Write V = v1v2 · · · vp. It
is readily checked that the set of elements {u1, . . . , up, v1, . . . , vp} generates F2p.
Moreover, a calculation using the Artin representation yields the following.

Lemma 6.4. The action of the braids z and a on the set {ur, vr}pr=1 is given by

z(ur) = ur[vr+1 · · · vp, v1 · · · vr], a(ur) = ur,
z(vr) = V vrV

−1, a(vr) = u−1
r−1urvru

−1
r ur−1.

Note that z(up) = up and that a(v1) = u1v1u
−1
1 .

Now consider the presentation of the group G(dAp) obtained from the braid
monodromy congτ ◦η : Fp+1 → P2p and the Artin representation, using the gen-
erating set {ur, vr}pr=1 for the free group F2p. Identify the generators γ1, γ12:j of
Fp+1 with their images in P2p via γ1 7→ congτ (γ1) = z, γ12:p 7→ congτ (γ12:p) = a,
and write γ12:j 7→ congτ (γ12:j) = aj for 1 ≤ j ≤ p − 1. With this notation, the
presentation for G(dAp) has relations

(6.2)
urz = zur[vr+1 · · · vp, v1 · · · vr], ura = aur,
vrz = zV vrV

−1, vra = au−1
r−1urvru

−1
r ur−1,

and uraj = aj · aj(ur), vraj = aj · aj(vr), for 1 ≤ j ≤ p− 1 and 1 ≤ r ≤ p.
Let A be the Alexander matrix obtained from this presentation, and A(2) the

evaluation at the character t(2). This evaluation is given by γ1 7→ −1, γ12:j 7→ 1,
yr 7→ −1, so z 7→ −1, a 7→ 1, aj 7→ 1, ur 7→ 1, vr 7→ −1. Let M, A, and Aj denote
the evaluations at t(2) of the Fox Jacobians of the actions of the pure braids z, a,
and aj , respectively. With this notation, we have

A(2) =


∆(2) 0 · · · 0 0 I2p + M

0 ∆(2) 0 0 I2p − A1

...
. . .

...
0 0 ∆(2) 0 I2p − Ap−1

0 0 · · · 0 ∆(2) I2p − A

,

where ∆(2) =
(
0 · · · 0 −2 · · · −2

)> is the evaluation of ∆ at t(2). Note
that the entries of A(2) are integers, and recall that A(2) has size 2p(p+1)×(3p+1).

To establish Proposition 6.2, we must show that rankKA(2) = 3p − 1 or 3p,
according to whether the field K has characteristic p or not (recall that charK 6= 2
by assumption). In the case charK = p, we already know that t(2) belongs to
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Σ1
1(M(dAp),K), so the inequality rankKA(2) ≤ 3p − 1 holds. Thus, it suffices to

prove the next result.

Lemma 6.5. The (integral) Smith normal form of the matrix A(2) has diagonal
entries 2, . . . , 2 (repeated 3p− 1 times) and 2p.

Proof. The matrix A(2) is equivalent, via row and column operations, to the matrix

(6.3)


0 0 · · · 0 0 2I2p + M− A
0 ∆(2) 0 0 I2p − A1

...
. . .

...
0 0 ∆(2) 0 I2p − Ap−1

0 0 · · · 0 ∆(2) I2p − A

.

A Fox calculus exercise using (6.2) shows that all entries of the matrices I2p − A
and I2p − Aj , 1 ≤ j ≤ p− 1, are divisible by 2, and that

2I2p + M− A = 2
(

Ip P
L− Ip Q

)
,

where Li,j = δi,j+1 (Kronecker delta), Qi,j = (−1)j+1, and

Pi,j =


(−1)j if i odd and j > i,

(−1)j+1 if i even and j ≤ i,
0 otherwise.

Let U =
(

Ip 0
Ip − L Ip

)(
Ip 0
0 R

)
and V =

(
Ip −P
0 Ip

)(
Ip 0
0 S

)
, where

R =



1 0 0 · · · 0 0
0 1 0 0 −1
0 2 1 0 −2
...

. . .
...

0 2 2 1 −(p− 2)
0 2 2 · · · 2 −(p− 2)


, S =



1 0 0 · · · 0 0
0 1 0 0 −1
0 0 1 0 −2
...

. . .
...

0 0 0 1 −(p− 2)
0 0 0 · · · 0 1


.

Then one can check that det R = det S = 1, and that U(2I2p + M−A)V is a 2p× 2p
diagonal matrix with diagonal entries 2, . . . , 2, 2p (in this order). Using these facts,
further row and column operations reduce the matrix (6.3) to0 2I3p−1 0

0 0 2p
0 0 v

 ,

where v is a column vector whose entries are even integers. Now recall that if K is
a field of characteristic p, then rankKA(2) ≤ 3p− 1. Consequently, the entries of v
must be divisible by p. The result follows. �

7. Proof of Theorem 2

We are now in position to complete the proof of Theorem 2 from the Introduction.
Recall we are given a prime p and the homogenous polynomial fp specified in (1.1),
and we need to compute the first homology group of the Milnor fiber Fp = f−1

p (1).
We shall treat the cases of odd and even primes p separately.
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7.1. The case p 6= 2. Recall Ap is the arrangement defined by the polynomial
Q(Ap) = x1x2(xp1 − x

p
2)(xp1 − x

p
3)(xp2 − x

p
3). The choice of multiplicities

a = (1, 1, 2, . . . , 2, 1, . . . , 1, 1, . . . , 1)

yields the homogeneous polynomial fp = x1x2(xp1 − x
p
2)2(xp1 − x

p
3)(xp2 − x

p
3). This

gives rise to a Milnor fibration fp : M(Ap) → C
∗, with fiber Fp = Fa. Let ZN be

the cyclic group of order N = deg(fp) = 4p+2, with generator g. The N -fold cyclic
cover Fp → M(dAp) is classified by the epimorphism λ : G(dAp) → ZN given by
λ(γ1) = g, λ(γ12:r) = g2, λ(γi3:r) = g.

Let K be an algebraically closed field, of characteristic not dividing N . The
homology group H1(Fp;K) may be calculated using Theorem 4.4:

dimKH1(Fp;K) = 3p+ 1 +
∑

1 6=k|N

ϕ(k) depth
K

t(k),

where t(k) are the characters defined in (6.1). Using Propositions 6.1 and 6.2, we
find:

(7.1) dimKH1(Fp;K) =

{
3p+ 1, if charK - 2p(2p+ 1),
3p+ 2, if charK = p.

Now recall that we have an isomorphism H1(Fp;Z) ∼= H1(G;Z[ZN ]) between the
first homology of Fp and that of G = G(dAp), with coefficients in the G-module
Z[ZN ] determined by the epimorphism λ : G→ ZN . Let Z2 ⊂ ZN be the subgroup
generated by gN/2, and let Z[Z2] ⊂ Z[ZN ] be the corresponding G-submodule.
Denote by J the kernel of the augmentation map ε : Z[Z2] → Z. Notice that gN/2

acts on J ∼= Z by multiplication by −1. Hence, the induced G-module structure

on J is given by the composite G α◦ab−−−→ Z
3p+1 t(2)−−→ {±1}, which shows that J is

the integral analogue of the local system Kt(2). Let Q = Z[ZN ]/J be the quotient
G-module, and consider the homology long exact sequence corresponding to the
coefficient sequence 0→ J → Z[ZN ]→ Q→ 0:

(7.2) · · · → H2(G;Q)→ H1(G; J)→ H1(G;Z[ZN ])→ H1(G;Q)→ · · ·

By Lemma 6.5, we have H1(G; J) ∼= (Z2)3p ⊕ Zp. Over an algebraically closed
field K with charK - N , the G-module Q decomposes as the direct sum of the
modules Kt(k), k 6= 2, together with the trivial module. So Proposition 6.1 implies
that that H1(G;Q) has no q-torsion, for any odd prime q not dividing 2p+ 1. Note
thatH2(G;Q) is free abelian, since the cohomological dimension ofG = F2poᾱFp+1

is 2. Applying these observations to the long exact sequence (7.2) reveals that the
map H1(G; J)→ H1(G;Z[ZN ]) induces an isomorphism on p-torsion. Therefore:

(7.3) H1(Fp;Z) = Z
3p+1 ⊕ Zp ⊕ T,

where T is a finite abelian group such that T ⊗Zq = 0 if q - 2(2p+ 1). This finishes
the proof of Theorem 2 in the case p 6= 2.

Remark 7.2. By Lemma 3.4, the p-torsion in (7.3) appears in the (−1)-eigenspace
of the algebraic monodromy h∗. Since an automorphism of H1(Fp;Z) must preserve
the p-torsion elements, h∗ acts on the Zp direct summand by x 7→ −x.
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Figure 2. Decone of deleted B3 arrangement, with multiplicities

7.3. The case p = 2. Now consider the arrangement A2, defined by the polynomial
Q(A2) = x1x2(x2

1 − x2
2)(x2

1 − x2
3)(x2

2 − x2
3). This is a deletion of the B3 reflection

arrangement, and appears as Example 4.1 in [21] and Example 9.3 in [14]. The
polynomial f2 = x2

1x2(x2
1 − x2

2)3(x2
1 − x2

3)2(x2 − x3) corresponds to the choice of
multiplicities a = (2, 1, 3, 3, 2, 2, 1, 1), shown in Figure 2 (the hyperplane at infinity
has multiplicity 1).

By Theorem 5.7, the variety Σ1
1(M(A2),C) contains a 1-dimensional component

sT , where T =
{

(u2, v2, 1, 1, v, v, u, u) | uv = 1
}

and s = (1, 1,−1,−1,−1,−1, 1, 1).
The subtorus T is not a component. For example, the point t ∈ T given by
u = exp(2π i /3) and v = u2 is not in Σ1

1(M(A2),C).
The Milnor fiber F2 = f−1

2 (1) is an N -fold cover of M(dA2), with N = 15. Using
Theorem 4.4 as before, we find that dimKH1(F2;K) = 7 if charK 6= 2, 3, or 5, and
dimKH1(F2;K) = 9 if charK = 2. Direct computation with the Alexander matrix
of G(dA2) (see [21, Ex. 4.1]) gives the precise answer:

(7.4) H1(F2;Z) = Z
7 ⊕ Z2 ⊕ Z2.

This finishes the proof of Theorem 2 in the remaining case p = 2.

Remark 7.4. Once again, the monodromy action preserves the torsion part in (7.4),
so Z15 acts on Z2⊕Z2. Since the torsion in H1(F2;Z) appears in the eigenspaces of
order 3, the monodromy acts via an automorphism of order 3, which, in a suitable
basis, has matrix

(
0 1
1 1

)
.
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