
ON THE HOMOTOPY LIE ALGEBRA OF AN ARRANGEMENT
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Abstract. Let A be a graded-commutative, connected k-algebra generated in degree
1. The homotopy Lie algebra gA is defined to be the Lie algebra of primitives of the
Yoneda algebra, ExtA(k, k). Under certain homological assumptions on A and its qua-
dratic closure, we express gA as a semi-direct product of the well-understood holonomy
Lie algebra hA with a certain hA-module. This allows us to compute the homotopy
Lie algebra associated to the cohomology ring of the complement of a complex hy-
perplane arrangement, provided some combinatorial assumptions are satisfied. As an
application, we give examples of hyperplane arrangements whose complements have
the same Poincaré polynomial, the same fundamental group, and the same holonomy
Lie algebra, yet different homotopy Lie algebras.

1. Definitions and statements of results

1.1. Holonomy and homotopy Lie algebras. Fix a field k of characteristic 0. Let A
be a graded, graded-commutative algebra over k, with graded piece Ak, k ≥ 0. We will
assume throughout that A is locally finite, connected, and generated in degree 1. In other
words, A = T (V )/I, where V is a finite-dimensional k-vector space, T (V ) =

⊕
k≥0 V ⊗k

is the tensor algebra on V , and I is a two-sided ideal, generated in degrees 2 and higher.
To such an algebra A, one naturally associates two graded Lie algebras over k (see for
instance [3], [14]).

Definition 1.1. The holonomy Lie algebra hA is the quotient of the free Lie algebra
on the dual of A1, modulo the ideal generated by the image of the transpose of the
multiplication map µ : A1 ∧A1 → A2:

(1) hA = Lie(A∗
1)
/
ideal (im(µ∗ : A∗

2 → A∗
1 ∧A∗

1)).

Note that hA depends only on the quadratic closure of A: if we put A = T (V )/(I2),
then hA = hA.

Definition 1.2. The homotopy Lie algebra gA is the graded Lie algebra of primitive
elements in the Yoneda algebra of A:

(2) gA = Prim(ExtA(k, k)).
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In other words, the universal enveloping algebra of the homotopy Lie algebra is the
Yoneda algebra:

(3) U(gA) = ExtA(k, k).

The algebra U = ExtA(k, k) is a bigraded algebra; let us write Upq to denote co-
homological degree p and polynomial degree q. Then Upq = 0, unless −q ≥ p. The
subalgebra R =

⊕
p≥0 Up,−p is called the linear strand of U . For convenience, we will

let Up
q = Up,−p−q. The lower index q is called the internal degree. Then U is a graded

R-algebra, with R = U0. Note that U+ =
⊕

q>0 Uq is an ideal in U , with U/U+
∼= R.

The relationship between the holonomy and homotopy Lie algebras of A is provided
by the following well-known result of Löfwall.

Lemma 1.3 (Löfwall [19]). The universal enveloping algebra of the holonomy Lie alge-
bra, U(hA), equals the linear strand, R =

⊕
p≥0 Up

0 , of the Yoneda algebra U = U(gA).

Particularly simple is the case when A is a Koszul algebra. By definition, this means
the homotopy Lie algebra gA coincides with the holonomy Lie algebra hA, i.e., U = R.
Alternatively, A is quadratic (i.e., A = A), and its quadratic dual, A! = T (V )/(I⊥2 ), co-
incides with the Yoneda algebra: A! = U . For an expository account of Koszul algebras,
see [13].

As a simple (yet basic) example, take E =
∧

V , the exterior algebra on V . Then E
is Koszul, and its quadratic dual is E! = Sym(V ∗), the symmetric algebra on the dual
vector space. Moreover, gA = hA is the abelian Lie algebra on V .

1.2. Main result. The computation of the homotopy Lie algebra of a given algebra
A is, in general, a very hard problem. Our goal here is to determine gA under certain
homological hypothesis. First, we need one more definition.

Let B = A be the quadratic closure of A. View J = ker(B � A) as a graded left
module over B.

Definition 1.4. The homotopy module of a graded algebra A is

(4) MA = ExtB(J, k),

viewed as a bigraded left module over the ring R = U(hA) = ExtB(k, k) via the Yoneda
product.

Theorem 1.5. Let A be a graded algebra over a field k, with quadratic closure B = A,
and homotopy module M = MA. Assume B is a Koszul algebra, and there exists an
integer ` such that Mq = 0 unless ` ≤ q ≤ ` + 1. Then, as graded Hopf algebras,

(5) U(gA) ∼= T (MA[−2]) ⊗̂k U(hA).

Here M [q] is the graded R-module with M [q]r = M q+r, while T (M [−2])⊗̂kR is the
“twisted” tensor product of algebras, with underlying vector space T (M [−2])⊗k R and
multiplication (m⊗ r) · (n⊗ s) = (−1)|r||n|((m⊗ n)⊗ rs + (m⊗ nr)⊗ s).

Taking the Lie algebras of primitive elements in the respective Hopf algebras, we
obtain the following.
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Corollary 1.6. Under the above hypothesis, the homotopy Lie algebra of A splits as a
semi-direct product of the holonomy Lie algebra with the free Lie algebra on the (shifted)
homotopy module,

(6) gA
∼= Lie(MA[−2]) o hA,

where the action of h on Lie(M) is given by [m,h] = −hm for h ∈ h and m ∈ M .

As pointed out to us by S. Iyengar, Theorem 1.5 implies (under our hypothesis) that
the projection map U(gA) → U(hA) is a Golod homomorphism. Therefore, the semi-
direct product structure of gA also follows from results of Avramov [1], [2].

1.3. Hyperplane arrangements. Let A = {H1, . . . ,Hn} be an arrangement of hyper-
planes in C`, with intersection lattice L(A) and complement X(A). The cohomology
ring A = H•(X(A), k) admits a combinatorial description (in terms of L(A)), due to
Orlik and Solomon:

(7) A = E/I,

where E is the exterior algebra over k, on generators e1, . . . , en in degree 1, and I is
the ideal generated by all elements of the form

∑r
q=1(−1)q−1ei1 · · · êiq · · · eir for which

rk(Hi1 ∩ · · · ∩Hir) < r; see [22].
The holonomy Lie algebra of the Orlik-Solomon algebra also admits an explicit pre-

sentation, this time solely in terms of L≤2(A). Identify Lie(A∗
1) with the free Lie algebra

over k, on generators xH = e∗H , H ∈ A. Then:

(8) hA = Lie(A∗
1)
/

ideal
{[

xH ,
∑

H′∈A : H′⊃F

xH′

] ∣∣ F ∈ L2(A) and F ⊂ H
}

.

As we shall see in Section 5, the homotopy Lie algebra gA also admits a finite presen-
tation, for a certain class of hypersolvable arrangements, to be defined below.

Question 1.7. Do there exist arrangements for which gA is not finitely presented? For
which the (bigraded) Hilbert series of U(gA) is not a rational function?

1.4. Hypersolvable arrangements. An arrangement A is called supersolvable if its
intersection lattice admits a maximal modular chain. The OS algebra of a supersolvable
arrangement has a quadratic Gröbner basis, and thus, it is a Koszul algebra (this result,
implicit in Björner and Ziegler [4], was proven in Shelton and Yuzvinsky [30]).

An arrangement A is called hypersolvable if it has the same intersection lattice up to
rank 2 as that of a supersolvable arrangement. This “supersolvable deformation,” B,
is uniquely defined, and has the property that the two complements have isomorphic
fundamental groups; see Jambu and Papadima [16, 17]. Let A = H•(X(A), k) and
B = H•(X(B), k) be the respective OS algebras. It is readily seen that B = A; thus,
A and B share the same holonomy Lie algebra: h = hA = hB. Furthermore, since B is
Koszul, we have gB = h.

The hypothesis of Theorem 1.5 holds in two nice situations, which can be checked
combinatorially; for precise definitions, see §4.2 and §4.3, respectively.

Theorem 1.8. Let A be an arrangement, and let A be its Orlik-Solomon algebra. Sup-
pose either
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(1) A is hypersolvable, and its singular range has length 0 or 1; or
(2) A is obtained by fibred extensions of a generic slice of a supersolvable arrange-

ment.
Then gA

∼= Lie(MA[−2]) o hA.

An explicit finite presentation for gA is given in Theorem 5.1, in the case when A
is a generic slice of a supersolvable arrangement. The Eisenbud-Popescu-Yuzvinsky
resolution [7] permits us to compute the Hilbert series of MA (and hence, that of gA) in
the case when A is a 2-generic slice of a Boolean arrangement.

Theorem 1.8 allows us to distinguish between hyperplane arrangements whose ho-
lonomy Lie algebras are isomorphic. In Example 6.2, we exhibit a pair of 2-generic,
4-dimensional sections of the Boolean arrangement in C7; the two arrangements have
the same fundamental group, the same Poincaré polynomial, and the same holonomy
Lie algebra, yet different homotopy Lie algebras.

In Section 7, we provide some topological interpretations. As noted in [5], [24], the
holonomy Lie algebra of a supersolvable arrangement equals, up to a rescaling factor, the
topological homotopy Lie algebra of the corresponding “redundant” subspace arrange-
ment. We extend this result, and relate the homotopy Lie algebra of an arbitrary hyper-
plane arrangement to the topological homotopy Lie algebras of the redundant subspace
arrangement. As a consequence, we find a pair of codimension-2 subspace arrangements
in C8, whose complements are simply-connected and have the same homology groups,
yet distinct higher homotopy groups.

2. Some homological algebra

2.1. The homotopy module. Let A be graded, graded-commutative, connected, lo-
cally finite algebra. Assume A is generated in degree 1, and its quadratic closure, B = A
is a Koszul algebra. Let E be the exterior algebra on A1 = B1. Let I and J be, re-
spectively, the kernels of the natural surjections E � B and B � A, giving the exact
sequences

0 // I // E // B // 0 ,(9)

0 // J // B // A // 0 .(10)

In what follows, we will record some homological properties of the ring A, viewed
as a B-module. Recall if N is a B-module, the Yoneda product gives ExtB(N, k) the
structure of a left module over the ring R = U(hA) = ExtB(k, k). An object of primary
interest for us will be the homotopy module of A,

(11) M = MA = ExtB(J, k).

This bigraded R-module will play a crucial role in the determination of the homotopy
Lie algebra gA.

Our grading conventions shall be as follows. Suppose V and W are Z-graded k-vector
spaces. Then f ∈ Homk(V,W ) has degree r if f : V q → W q+r for all q. For any Z-
graded k-vector space V , we shall let V ∗ denote the graded k-dual of V . In particular,
then, (V ∗)q = Homk(V −q, k). If V has finite k-dimension in each graded piece, then
(V ∗)∗ ∼= V .
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We shall treat all boundary maps in chain complexes as having polynomial degree 0
and homological degree +1. Then, in particular, chain complexes will be regarded as
cochain complexes in negative degree. We shall indicate shifts of polynomial grading by
defining V (q)r = V q+r, and shifts of homological grading by writing V [q] analogously.

Following these conventions, Mpq = Extp
B(J, k)q is nonzero only for q ≤ −p. Then,

taking Mp
q = Mp,−p−q (the internal grading), we have Mp

q 6= 0 only for q ≥ 0. The
grading is such that, for each fixed q, the action of R on M satisfies Rr ⊗Mp

q → M r+p
q .

Lemma 2.1. ExtB(A, k) ∼= k⊕M [−1] as graded R-modules.

Proof. Consider the long exact sequence for ExtB(−, k) applied to (10):

(12) · · · // Extq−1
B (J, k) // Extq

B(A, k) // Extq
B(B, k) // · · ·

Since Ext0B(A, k) ∼= Ext0B(B, k) ∼= k and Extq
B(B, k) = 0 for all q > 0, the map

ExtB(B, k) → ExtB(J, k) is zero. So the long exact sequence breaks into short ex-
act sequences which, using (11), we will write as a single short exact sequence of graded
R-modules,

(13) 0 // M [−1] // ExtB(A, k) // k // 0 .

For each q, one of the two maps is zero and the other is an isomorphism, so the short
exact sequence splits. �

2.2. Injective resolutions. For any E-module N , let

(14) N◦ = {a ∈ E : ax = 0 for all x ∈ N},
the annihilator of N in E. Later on, we require explicit, injective resolutions.

Lemma 2.2. Suppose the ring B = E/I is an arbitrary quotient of a finitely-generated
exterior algebra E. If

(15) 0 koo B ⊗k F 0oo B ⊗k F 1oo · · ·oo

is a minimal, free resolution of k over B, then

(16) 0 // k // B∗ ⊗k (F 0)∗ // B∗ ⊗k (F 1)∗ // · · ·

is an injective resolution of k over B.

Proof. The resolution (15) is an acyclic complex of E-modules, so its vector space dual
(16) is an acyclic complex as well, since each F i has finite k-dimension.

Now B∗ ∼= I◦(n) as E-modules, via the determinantal pairing in E. On the other
hand, E is injective as a module over itself, so I◦ is injective as an E-module; see [29,
Prop. 2.27]. Since each F i has finite k-dimension, each B∗ ⊗k (F i)∗ is injective. �

Lemma 2.3. Let A and B two algebras, with A = B Koszul. Write B = E/I, A = B/J ,
h = hA = hB, and R = U(h). Then:

(1) The complex

(17) 0 // k // I◦(n)⊗k R0 // I◦(n)⊗k R1 // · · ·

is an injective resolution of k over B, with boundary map described below.
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(2) Extq
B(A, k) ∼= Hq(J◦(n)⊗k R•), for all q ≥ 0.

Proof. The Koszul complex K∗ = B ⊗k R∗ is a free B-module resolution of k, so it is
also an acyclic complex of E-modules, with boundary map induced from

(18) ∂∗ : 1⊗ x∗i 7→ ei ⊗ 1.

Then Homk(B ⊗k R∗, k) = B∗ ⊗k R is an injective resolution, by the previous Lemma.
To establish (2), it suffices to note that HomB(A, I◦) ∼= J◦. �

3. Proof of the main result

Our approach to the proof of Theorem 1.5 is to construct a spectral sequence compar-
ing the minimal resolution and the Koszul complex of A. We show the spectral sequence
collapses at E2 under suitable hypotheses in Proposition 3.2, though not in general (Ex-
ample 3.3). This collapsing is enough to prove the theorem, via Proposition 3.1.

3.1. A spectral sequence. Using the previous notation, A⊗kU∗ → k → 0 is a minimal
free resolution of k over A. It is filtered by degree, and the linear strand is A ⊗k R∗.
That is, there is a short exact sequence of chain complexes

(19) 0 // A⊗k R∗ 1⊗ε∗ // A⊗k U∗ // A⊗k U∗
+

// 0 .

Now B ⊗k R∗ is a free resolution of k over B, since B is Koszul. Using Lemma 2.1,
we find that the homology of the linear strand (Koszul complex) is

H•(A⊗R∗) ∼= TorB(A, k)
∼= ExtB(A, k)∗(20)
∼= k⊕M [−1]∗.

The long exact sequence in homology then reveals that

(21) H•(A⊗k U∗
+) ∼= M [−2]∗

as A-modules. Recall that A acts trivially on M (and hence on M [−2]∗), so

(22) HomA(H•(A⊗k U∗
+), k) ∼= M [−2].

On the other hand, since our complex is a quotient of a minimal resolution,

(23) H•(HomA(A⊗k U∗
+, k)) ∼= U+.

Comparing the two gives a universal coefficients spectral sequence of the form

(24) Epq
2 = Extp

A((M [−2]∗)q, k) ∼= M [−2]q ⊗k Up =⇒ Up+q
+ .

The spectral sequence is used as follows.

Proposition 3.1. If E∞ = E2 in the spectral sequence (24), then

0 // U ⊗k M [−2]
φ // U

ε // R // 0

is exact, and the conclusion of Theorem 1.5 holds.
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Proof. If E∞ = E2, then U ⊗ M [−2] ∼= U+ as a (left) U -module. Now U+ = ker ε,
giving the short exact sequence. Since h is a Lie subalgebra of g, R = U(h) is a Hopf
subalgebra of U = U(g), so the sequence splits. The isomorphism of Theorem 1.5 can
then be obtained by induction. �

3.2. Collapsing conditions. In order to show that the higher differentials in the spec-
tral sequence (24) vanish, we use a degree argument that begins by considering the E0

term. Since

(25) 0 // k // A∗ ⊗k U0 // A∗ ⊗k U1 // · · ·

is an injective resolution of k over A, (Lemma 2.2) we consider the double complex

Cpq = HomA(A⊗k (U q)∗+, A∗ ⊗k Up)(26)
∼= U q

+ ⊗k A∗ ⊗k Up,

with induced boundary maps ∂h and ∂v. Then our spectral sequence (24) is obtained by
filtering C•• by columns. Checking the grading, we see

(27) ∂v : U q
+ ⊗k (A∗)s ⊗k Up → U q+1

+ ⊗k (A∗)s+1 ⊗k Up

and

(28) ∂h : U q
+ ⊗k (A∗)s ⊗k Up → U q

+ ⊗k (A∗)s+1 ⊗k Up+1.

By looking at E2 and ∂v, we see that we must have E1 = E2.
We first consider the case where the ideal J has a (shifted) linear resolution.

Proposition 3.2. Suppose A is a hypersolvable arrangement for which Mp
q = 0 unless

q = `, for some fixed `. Then E2 = E∞.

Proof. In this case, M [−2]qr = 0 unless r = `−2. Then Hq(Cp•, ∂v)r = 0 unless r = `−2.
First we note that (U+)q

t = 0 unless t ≥ `− 2. This can be seen from the fact that U+

is a graded subquotient of M [−2] ⊗k U , from (24): the support of M [−2] is described
above, and Up

q = 0 unless q ≥ 0.
Regard A∗ as a chain complex concentrated in homological degree 0. Then observe that

the internal degree of a nontrivial cocycle representative in (U+)q
t⊗k (A∗)s is s+t = `−2,

by the first observation above. It follows s ≤ 0 from the inequality above. However,
(A∗)s = 0 unless 0 ≤ s ≤ `, so the representative of a nonzero, homogeneous E2-cocycle
in E0 must have s = 0.

Now suppose x ∈ Epq
2 is such a cocycle, with representative x̃ in Cpq. By the above,

x̃ ∈ U q
+⊗k (A∗)0. Then ∂h(x̃) = 0 in Cp+1,q by (28). This means d2(x) = 0, and similarly

for higher differentials. �

Proof of Theorem 1.5. In view of Proposition 3.1, it remains only to show the spectral
sequence collapses when Mp

q = 0 unless 0 ≤ `−q ≤ 1 for some `. In this case, let N = M`

denote the R-submodule of M of internal degree `.
By the same reasoning as in the proof of Proposition 3.2, N [−2] ⊗ U ⊆ ker dk for

k ≥ 2. Now N [−2] ∼= N [−2]⊗ U0 is a submodule of the p = 0 column of E2. Since it is
(trivially) not in the image of any nonzero differentials, N [−2] is an R-submodule of U .

Let K denote the Hopf subalgebra of U generated by R and N [−2]. By [20, Theorem
4.4], U is a free K-algebra. It follows that K ∼= T (N [−2])⊗k R. In the notation of the
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previous proposition, any nontrivial differential dk with k ≥ 2 would lift in E0 to a map
U+ ⊗ (A∗)1 ⊗ U → U+ ⊗ (A∗)0 ⊗ U . We have shown that the targets of these maps are
unchanged between E2 and E∞, so it follows that the maps themselves must also all be
zero. �

3.3. A non-collapsing spectral sequence. Calculations with the Macaulay 2 package
[15] show that the hypotheses of Theorem 1.5 cannot in general be relaxed: differentials
in the spectral sequence (24) may not be zero.

Example 3.3. Consider the arrangement defined by the polynomial

Q = xyz(x− w)(y − w)(z − w)(x− u)(y − u).

Let A be the Orlik-Solomon algebra, and M = MA its homotopy module. It is readily
seen that Mq 6= 0 for q = 3, 4, 5. An Euler characteristic calculation shows that the
spectral sequence (24) must have a nonzero differential

d04
2 : M [−2]46 ⊗k U0 → M [−2]35 ⊗k U2.

It follows that the Hopf algebra U(gA) will not have the structure we find in Theorem 1.5.

4. Hypersolvable arrangements

In this section, we apply our main result to certain classes of hypersolvable arrange-
ments.

4.1. Solvable extensions. We start by reviewing in more detail the notion of a hyper-
solvable arrangement, introduced by Jambu and Papadima in [16]. Roughly, a hyper-
solvable arrangement is a linear projection of a supersolvable arrangement that preserves
intersections through codimension two.

Definition 4.1 ([16]). An arrangementA is hypersolvable if there exist subarrangements
{0} = A1 ⊂ A2 ⊂ · · · ⊂ Am = A, so that each inclusion Ai ⊂ Ai+1 is solvable. In turn,
an inclusion of hyperplane arrangements A ⊂ B is called a solvable extension if:

(1) There are no hyperplanes H ∈ B \ A and H ′,H ′′ ∈ A with H ′ 6= H ′′ and
rk(H ∩H ′ ∩H ′′) = 2;

(2) For any H,H ′ ∈ B \ A, there is exactly one H ′′ ∈ A with rk(H ∩H ′ ∩H ′′) = 2,
denoted by f(H,H ′);

(3) For any H,H ′,H ′′ ∈ B \ A, one has rk(f(H,H ′) ∩ f(H,H ′′) ∩ f(H ′,H ′′)) ≤ 2.

It turns out that if A is hypersolvable with a sequence of solvable extensions as above,
then for all i, the rank of Ai and Ai+1 differ by at most one. If the ranks are equal, the
extension is said to be singular; otherwise, the extension is nonsingular (or fibred, in the
sense of Falk and Randell, [11]).

If s denotes the number of singular extensions, then, rkA = m − s. Jambu and
Papadima show in [17] that one can replace the singular extensions by nonsingular ones
in order to construct a supersolvable arrangement B of rank m that projects onto A,
preserving the intersection lattice through rank 2. That is,

Theorem 4.2. An arrangement A is hypersolvable iff there exists a supersolvable ar-
rangement B and a linear subspace W for which A = B ∩W and L(A)≤2

∼= L(B)≤2.
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Proof. The implication “⇒” is Theorem 2.4 of [17]. The converse, due to Jambu (private
communication), runs as follows. Suppose B is supersolvable and there exists a subspace
W as above. By definition, B has a maximal modular chain F1 < F2 < · · · < Fm. Putting
Bi = BXi gives a sequence of solvable extensions for B, all fibred. For 1 ≤ i ≤ m, let
Ai = Bi∩W . Since collinearity relations are preserved, each Ai ⊂ Ai+1 is also a solvable
extension, so A is hypersolvable. �

We remark that, in the above proof, Ai ⊂ Ai+1 is a singular extension if and only if
Fi∩W = Fi+1∩W . The arrangement B in called the supersolvable deformation of A. For
example, any arrangement A for which no three hyperplanes intersect in codimension
three is hypersolvable, and its supersolvable deformation is the Boolean arrangement in
Cn, where n = |A|.

Lemma 4.3. Suppose A′ ⊂ A is a fibred extension. The projection p : X(A) → X(A′)
induces an inclusion A′ ↪→ A of the respective Orlik-Solomon algebras which makes A
into a free A′-module of rank k = |A \ A′|.

Proof. The projection p : X → X ′ is a bundle map, with fiber C\{k points}. As noted by
Falk and Randell [11], this bundle admits a section, and thus the Serre spectral sequence
collapses at the E2 term. Hence, H•(X) ∼= H•(X ′)⊗H•(∨kS1). The result follows. �

4.2. Singular range. We now give some easy to check combinatorial conditions insuring
that a hypersolvable arrangement satisfies the hypothesis of Theorem 1.5. We start by
attaching a pair of relevant integers to a hypersolvable arrangement.

Definition 4.4. Suppose A is hypersolvable with supersolvable deformation B, and
A 6= B. Let c be the least integer for which L(A)≤c 6∼= L(B)≤c. Since A 6= B, there is a
largest integer i for which the extension Ai ⊂ Ai+1 is singular. Let d the rank of these
two arrangements. We will call the pair (c, d) the singular range of the arrangement A,
and |d− c| the length of this range.

Lemma 4.5. If A is hypersolvable with singular range (c, d), then 3 ≤ c ≤ d.

Proof. The inequality c ≥ 3 follows from Theorem 4.2. Suppose d < c; then L(A)≤d
∼=

L(B)≤d. It follows that L(Ad+1)≤d
∼= L(Bd+1)≤d, whence Ad+1 = Bd+1 since the ar-

rangements are central. Since d is greater than or equal to the index of the last singular
extension, however, Ai = Bi for d + 1 ≤ i ≤ m, so A = B, a contradiction. �

Let A = H•(X(A), k) and B = H•(X(B), k) be the respective Orlik-Solomon alge-
bras. Since L(A)≤2

∼= L(B)≤2, and since the Orlik-Solomon algebra of a supersolvable
arrangement is quadratic, the algebra B = E/I is the quadratic closure of A. Let
J = ker(B � A), and let M = ExtB(J, k), viewed as a module over R = ExtB(k, k).
Since B is supersolvable, the algebra B is Koszul (see [30]); thus, R = B!.

Lemma 4.6. If A is a hypersolvable arrangement with singular range (c, d), then Mp
q = 0

unless p ≥ 0 and c ≤ q ≤ d.

Proof. The ideal J has a minimal, (infinite) free resolution over B of the form

(29) 0 Joo B ⊗k (M0,−)∗oo B ⊗k (M1,−)∗oo · · ·oo
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Recall that J is generated by Orlik-Solomon relations. By Definition 4.4, the least degree
of a generator of J is c, so M0

c 6= 0 and M0
q = 0 for q < c. Thus Mp

q = 0 for q < c,
establishing the first inequality.

To show Mp
q = 0 for q > d, too, let i be the largest index of a singular extension

Ai ⊂ Ai+1. let Bi+1 = H•(X(Bi+1), k) and Ai+1 = H•(X(Ai+1), k), and let B′
i+1 =

H•(X(B′i+1), k) be the cohomology ring of the projectivization (decone) of Bi+1. Recall
from [22] that X(Bi+1) = X(B′i+1) × C×. From the Künneth formula, we obtain the
following exact sequence of B′

i+1-modules:

(30) 0 // B′
i+1

// Bi+1
// B′

i+1(−1) // 0.

Let Ji+1 denote the kernel of the canonical projection Bi+1 � Ai+1. If we let J ′ =
Ji+1 ∩B′

i+1, then Ji+1 = Bi+1⊗B′
i+1

J ′, as a module over Bi+1. Since A, B are obtained
from Ai+1, Bi+1, respectively, by a sequence of fibred extensions, J = B ⊗Bi+1 Ji+1.

On the other hand, Bi+1 is a free module over B′
i+1, and by applying Lemma 4.3

inductively, B is free over Bi+1. Therefore, B′
i+1 → B is a flat change of rings, and it is

enough to check that

(31) Extp
B′

i+1
(J ′, k)q = 0

if q > d. By Lemma 2.1, Extp
B′

i+1
(J ′, k)q = Extp+1

B′
i+1

(A′
i+1, k)q−1. Since B′

i+1 is Koszul

and (A′
i+1)q = 0 for q > d− 1, the rank of the arrangement, the groups (31) are zero for

q > d by [18, Lemma 2.2]. �

The Lemma says, in particular, that the B-module J(−c) has Castelnuovo-Mumford
regularity no greater than the length of the singular range, d− c. Moreover, the Lemma
gives a combinatorial condition for the hypotheses of Theorem 1.5 to be satisfied.

Corollary 4.7. If A is hypersolvable and its singular range has length 0 or 1, then
gA

∼= Lie(M [−2]) o hA.

Example 4.8 (2-generic arrangements of rank 4). Suppose A is a central arrangement
in C4, with the property that no three hyperplanes contain a common plane. Such
an arrangement is hypersolvable, by Theorem 4.2, with supersolvable deformation B a
Boolean arrangement. From Definition 4.4 and Lemma 4.5, 3 ≤ c ≤ d ≤ 4, so the
singular range has length 0 or 1.

On the other hand, the arrangement from Example 3.3 is hypersolvable, with singular
range (3, 5), and Corollary 4.7 does not apply (indeed, its conclusion fails).

4.3. Generic slices of supersolvable arrangements. Lemma 4.6 provides bounds
on the polynomial degrees of the homotopy module M , which cannot be improved with-
out imposing further restrictions on the arrangement. In general, it is not obvious how
to characterize the support of M combinatorially; the problem seems similar to that of
characterizing which arrangements have quadratic defining ideals, investigated in partic-
ular in [10, 6]. To this end, we isolate a class of hypersolvable arrangements for which
the situation is more manageable.



HOMOTOPY LIE ALGEBRA OF AN ARRANGEMENT 11

Definition 4.9. A codimension-k linear space W is said to be generic with respect to
an arrangement B if rk(X ∩W ) = rkX + k for all X ∈ L(B) with rkX ≤ rkB − k.

If B is an essential, supersolvable arrangement of rank m and W is a proper, lin-
ear space of dimension ` ≥ 3, then by Theorem 4.2, the arrangement A = B ∩ W is
hypersolvable. We call such an arrangement a generic (hypersolvable) slice of rank `.

Not every hypersolvable arrangement is a generic slice, see Example 4.15 from [23].

Lemma 4.10. Let B be a rank m supersolvable arrangement, and let A be a rank `
generic slice. Then the singular range of A is (`, `).

Proof. The assumption of genericity means L(A)≤`−1
∼= L(B)≤`−1. However, X∩W = 0

for all X ∈ L(B)`, so since W is proper and B is essential, the singular range of A is
(`, d) for some d. On the other hand, rkA` = rkAm = `, so the last m − ` extensions
are all singular, and d = `. �

This is to say that, for generic slice arrangements, the module J(−`) has a linear
resolution. Slightly more generally:

Proposition 4.11. Let A be a rank ` hypersolvable arrangement. Suppose there exists
a generic slice C and fibred extensions C = Am−i ⊂ · · · ⊂ Am−1 ⊂ Am = A, for some
i ≥ 0. Then the singular range of A is (`, `).

Proof. As in the proof of Lemma 4.6, we may reduce to the case where A = C, a generic
slice of rank `. Let B be the supersolvable deformation of A. Denote by A′ and B′ the
Orlik-Solomon algebras of the respective decones, and let J ′ = ker(B′ � A′).

Let R′ = (B′)!, and let K = R′ ⊗k (B′)∗ be the corresponding Koszul complex. That
is, Kq = R′(−q) ⊗k (B′q)∗ for q ≥ 0, with differential ∂ : e∗i ⊗ 1 7→ 1 ⊗ xi. Since B′ is a
Koszul algebra, K is a free resolution of k over R′.

Let M ′ be the `-th syzygy module in the resolution K → k → 0. That is, M ′ is the
cokernel of ∂`+1, a left R′-module, which means M ′ has minimal free resolution

(32) 0 // Km
∂m // · · · // K`+1

∂`+1 // K`
η // M ′ // 0.

From this we see that M ′ is concentrated in internal degree `, and ExtR′(M ′, k) ∼= J ′, as a
B′-module. Since Koszul duality is an involution, ExtB′(J ′, k) ∼= M ′ as a left R′-module,
and M ′ is bigraded as claimed. �

The Proposition gives another criterion for the hypotheses of Theorem 1.5 to be sat-
isfied. We obtain:

Corollary 4.12. If A is obtained by fibred extensions of a generic slice of a supersolvable
arrangement, then gA

∼= Lie(M [−2]) o hA.

4.4. Hilbert series. Expressions for the Hilbert series of the graded module M =
ExtB(J, k) are not known in general: compare with [28]. However, a simple formula
exists for generic slices, which can be extended to fibred extensions of generic slices.

Let βi denote the ith Betti number of B′, so that h(B′, t) =
∑m

i=0 βit
i is its Hilbert

series. The following fact is well-known; see [22].
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Lemma 4.13. There exist positive integers 1 = d1 ≤ d2 ≤ · · · ≤ dm for which

h(B′, t) =
m∏

j=2

(1 + djt).

By taking the Euler characteristic of (32), we note that for a generic slice of dimension
`,

(33) hR(M, t) = hR′(M ′, t) = h(R′, t)
m−∑̀
i=0

(−1)iβi+`t
i.

More generally, a fibred extension results in the same formula. Under the hypotheses of
Theorem 1.5, together with formula (33), we have:

Corollary 4.14. If h(U, t, u) =
∑

p,q dimk Up
q tpuq is the bigraded Hilbert series of U =

U(gA), then

(34) h(U, t, u) = h(R, t)
(
1− u−2hR(M, t, u)

)−1
.

In the case of a generic slice of dimension `,

(35) h(U, t, u) = h(R, t)
(

1− t2u−2h(R, t)
m−∑̀
i=0

(−1)iβi+`t
i

)−1

.

5. A presentation for the homotopy Lie algebra

For the hypersolvable arrangements satisfying the hypotheses of Theorem 1.8, the
problem of writing an explicit presentation for the homotopy Lie algebra gA is equiva-
lent to that of presenting the homotopy module MA = ExtB(J, k). We carry out this
computation for generic slices of supersolvable arrangements.

Let A = {H1, . . . ,Hn} be a hypersolvable arrangement, with supersolvable deforma-
tion B. As usual, let h denote the holonomy Lie algebra, and R = U(h) its enveloping
algebra. Recall h has a presentation with n generators x1, . . . , xn in degree (1, 0), one
for each hyperplane Hi ∈ A, and for each flat F ∈ L2(A) = L2(B), relations

(36) [xi,
∑
j∈F

xj ] = 0,

for all i for which i ∈ F (i.e., F ⊂ Hi).
Now assume A is a generic slice of a supersolvable arrangement. Then the resolu-

tion (32) gives a presentation of the (deconed) homotopy module M ′ as an R′-module.
In order to use this presentation explicitly, we will choose the basis for B′∗ given by
identifying it with the flag complex of B′, for which we refer to [6].

Recall Flp is a free k-module on “flags” (F1, . . . , Fp), where Fi ∈ Li(B′) for 1 ≤ i ≤ p,
and Fi < Fi+1, modulo the following relations:

(37)
∑

G: Fi−1<G<Fi+1

(F1, . . . , Fi−1, G, Fi+1, . . . , Fp),
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for each i, 1 < i < p. Moreover, the map f : Flp → (B′p)∗ given by

(38) f : (F1, . . . , Fp) 7→
(∑

i∈F1

e∗i

)( ∑
i∈F2−F1

e∗i

)
· · ·
( ∑

i∈Fp−Fp−1

e∗i

)
,

is an isomorphism, cf. [27, dual of (2.3.2)].
Under the identification Fl ∼= B′∗, the boundary map in the Koszul complex becomes

the following. Given a flag F = (F1, . . . , Fp) and i ∈ Fp, define an element F− i ∈ Flp−1

by finding the integer j for which i ∈ Fj − Fj−1, and letting

(39) F− i = (−1)j−1
∑

(F1, . . . , Fj−1, Gj , Gj+1, . . . , Gp−1),

where the sum is taken over all flags with the property that i 6∈ Gp−1 and Gk < Fk+1

for all k, j ≤ k < p. Then the boundary map is given by extending

(40) ∂ : (F1, . . . , Fp) 7→
∑
i∈Fp

(F− i)⊗ xi

R-linearly.
For each element F ∈ Fl`, let yF denote the corresponding element of M ′; that is,

yF = η ◦ (f ⊗ 1)(F ⊗ 1). In particular, we find a minimal generating set for M ′ by
choosing a set of β` flags of length ` in L(B) appropriately. In particular, one may
construct a basis for Fl` using nbc-sets: see, for example, [6, Lemma 3.2].

Then the relations in M ′ are given by the image of ∂`+1 in (32). We have, for each
flag F = (F1, . . . , F`+1), a relation in M ′ of the form

(41)
∑

i∈F`+1

yF−ixi.

It follows that in gA, for each flag F = (F1, . . . , F`+1), we have a relation

(42)
∑

i∈F`+1

[xi, yF−i].

Now M ′ is the restriction of the module M from R to R′, so the above gives a
presentation for M as well, noting that the central element

∑n
i=1 xi in R acts trivially.

One can find a minimal set of relations just by taking the flags F above to come from a
basis of Fl`+1. We summarize this discussion, as follows.

Theorem 5.1. Let A = {H1, . . . ,Hn} be a generic slice of a supersolvable arrangement,
and let A be the Orlik-Solomon algebra of A. Then, the homotopy Lie algebra gA has
presentation with generators

• xi in degree (1, 0), for each i ∈ [n],
• yF in degree (2, `− 2), for each F ∈ Fl`,

and relations
•
[
xi,
∑

j∈F xj

]
= 0, for each flat F ∈ L2(A) and each i ∈ F ,

•
∑

i∈F`+1

[
xi, yF−i

]
= 0, for each flag F = (F1, . . . , F`+2) ∈ Fl`+1,

•
[∑n

i=1 xi, yF

]
= 0, for each F ∈ Fl`.

We illustrate the above with an example.
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Example 5.2. Consider the arrangement A defined by the polynomial

QA = xyz(x− z)(y − z)(2x− y − 4z)(2x− y − 5z)(x + 5y + 2z)(x + 5y + z).

This is a generic slice of the supersolvable arrangement B, the cone over the arrangement
defined by the polynomial QB′ = vwxy(x − 1)(y − 1)(v − 1)(w − 1). The Poincaré
polynomials of the deconed arrangements are given by

π(A′, t) = 1 + 8t + 24t2,

π(B′, t) = (1 + 2t)4 = 1 + 8t + 24t2 + 32t3 + 16t4.

Thus the homotopy module M ′ has 32 generators and 16 relations, which can be de-
scribed as follows.

Label the hyperplanes of B′ as 00, 10, 20, 30, 01, 11, 21, 31, in the order above. A basis
of 32 flags of length 3 can be constructed by choosing three intersecting hyperplanes
ia, jb, kc, with 0 ≤ i < j < k ≤ 3 and a, b, c ∈ {0, 1}, and forming a flag by successively
intersecting the hyperplanes, from right to left. We will call this flag Fiajbkc . A basis
of 16 flags of length 4 in B′ is constructed by choosing four intersecting hyperplanes,
0a, 1b, 2c, 3d, for all choices of a, b, c, d ∈ {0, 1}, and forming a flag again by successive
intersection.

Let gA be the holonomy Lie algebra of A. Then gA has one generator xH for each
hyperplane H, together with 32 additional generators yiajbkc in degree (2, 1), and relations

[x0a , y1b2c3d
]− [x1b

, y0a2c3d
] + [x2c , y0a1b3d

]− [x3d
, y0a1b2c ],

for each a, b, c, d ∈ {0, 1}, in addition to the holonomy relations (8), and relations[ ∑
H∈A

xH , yiajbkc

]
for each choice of i, j, k, a, b, c.

6. Two-generic arrangements of rank four

We now present a method for computing the Hilbert series of the homotopy Lie algebra
of a particularly nice class of arrangements: rank-4 arrangements for which no three
hyperplanes contain a common plane.

For any rank ` arrangement A with n hyperplanes, let E =
∧

k(e1, . . . , en) be the exte-
rior algebra, A = E/I the Orlik-Solomon algebra, and S = k[x1, . . . , xn] the polynomial
algebra. We recall the following.

Theorem 6.1 (Eisenbud-Popescu-Yuzvinsky [7]). The complex of S-modules

0 F (A)oo A` ⊗ Soo . . .oo A1 ⊗ Soo A0 ⊗ Soo 0oo

is exact, where the boundary maps are induced by multiplication by
∑n

i=1 ei⊗xi, and the
S-module F (A) is taken as the cokernel of the map A`−1 ⊗ S → A` ⊗ S.

It follows from Bernstein-Gelfand-Gelfand duality that, for each p ≥ 0, there is a
graded isomorphism of S-modules,

(43) Extp
E(A, k)q = Ext`−q

S (F (A), S)p+q.
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We refer to [28] for the case of the smallest q > 0 for which this is nonzero. Details will
appear in further work.

Now let A be a 2-generic arrangement. Notice that B = E and U(h) = B! = S. Then,
applying Lemma 2.1 to (43), we obtain

(44) Mp
q = Ext`−q+1

S (F (A), S)p+q,

for p ≥ 0 and 0 ≤ q ≤ `. As a result, presentations for the S-modules Mq can be obtained
computationally for specific examples, using formula (44).

We recall from Example 4.8 that, if the rank of the arrangement ` = 4, then A satisfies
hypotheses (1) of Theorem 1.8: Mq = 0 unless q = 3 or q = 4, i.e., the singular range of
A is (3, 4).

Example 6.2. Consider arrangements A1 and A2 defined by the polynomials

Q1 = xyzw(x + y + z)(y + z + w)(x− y + z + w),

Q2 = xyzw(x + y + z)(y + z + w)(x− y + z − w).

Both arrangements have 7 hyperplanes and 5 lines that each contain 4 hyperplanes, so
the characteristic polynomials are π(A1, t) = π(A2, t) = 1+7t+21t2 +30t3 +15t4. Since
there are no nontrivial intersections in codimension 2, the fundamental group of both
complements is Z7, and R = U(h) is a polynomial ring.

We now use (44) to compute the Hilbert series of the graded modules M3 and M4

(recalling Mq = 0 for q 6= 3, 4). With the help of Macaulay 2, we find for A1

h(M3, t) = (5 + 2t)/(1− t)3 = 5 + 17t + 36t2 + 62t3 + · · ·
h(M4, t) = (2− t)(1 + 2t + 2t2)/(1− t)6 = 2 + 15t + 62t2 + 185t3 + · · ·

while for A2,

h(M3, t) = (5 + t)/(1− t)3 = 5 + 16t + 33t2 + 56t3 + · · ·
h(M4, t) = (1 + 6t− t2 − t3)/(1− t)6 = 1 + 12t + 56t2 + 175t3 + · · ·

Using formula (34), this yields expressions for the Hilbert series of U(g1) and U(g2).
Comparing these Hilbert series shows U(g1) 6∼= U(g2), and hence the two arrangements
must have non-isomorphic homotopy Lie algebras.

Example 6.3. In 1946, Nandi [21] showed that there are exactly three inequivalent
block designs with parameters (10, 15, 6, 4, 2). We list the blocks of each below. Each
block design gives rise to a rank-4 matroid on ten points by taking the dependent sets to
be those subsets that either contain one of the blocks or contain at least five elements.

D1 {abcd, abef, aceg, adhi, bchi, bdgj, cdfj, afhj, agij,
behj, bfgi, ceij, cfgh, defi, degh}

D2 {abcd, abef, aceg, adhi, bcij, bdgh, cdfj, afhj, agij,
aehj, bfgi, cehi, cfgh, defi, degj}

D3 {abcd, abef, acgh, adij, bcij, bdgh, cdef, aegi, afhj,
behj, bfgi, cehi, cfgj, degj, dfhi}
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By construction, there are no nontrivial, dependent sets of size three, so each arrange-
ment is 2-generic.

If we call the corresponding Orlik-Solomon algebras A1, A2, and A3, it is straightfor-
ward to calculate that h(Ai, t) = 1+10t+45t2 +105t3 +69t4 for i = 1, 2, 3. In each case,
the singular range is (3, 4). The ideals J1, J2, J3 have differing resolutions, however,
from which it follows that gA1 , gA2 , and gA3 are pairwise non-isomorphic.

7. Topological interpretations

7.1. Generic slices. A particularly simple situation, analyzed in detail by Dimca and
Papadima in [8], is when A is a generic slice of rank ` > 2 of a supersolvable arrangement
B. Let A′ and B′ be the respective decones, with complements X = X(A′) and Y =
X(B′). The two spaces share the same fundamental group, π, and the same integral
holonomy Lie algebra, h.

In [8, Theorems 18(ii) and 23], Dimca and Papadima establish the following facts. The
universal enveloping algebra U(h) is isomorphic (as a Hopf algebra) to the associated
graded algebra grIπ(Zπ), where Zπ is the group ring of π, with filtration determined
by the powers of the augmentation ideal Iπ. The first non-vanishing higher homotopy
group of X is π`−1(X); when viewed as a module over Zπ, it has resolution of the form

(45) 0 // Hm(Y )⊗ Zπ // · · · // H`(Y )⊗ Zπ // π`−1(X) // 0 .

Finally, the associated graded module of π`−1(X), with respect to the filtration by powers
of Iπ, has Hilbert series

(46) h(gr•Iπ π`−1(X), t) = (−1/t)`

(
1−

∑`−1
j=0(−1)jβjt

j∑m
j=0(−1)jβjtj

)
,

where βj are the Betti numbers of Y .
Consider the integral cohomology rings A = H•(X, Z) and B = H•(Y, Z). We have

(Bi)∗ = Hi(Y, Z), since the homology of an arrangement complement is torsion-free.
Thus, tensoring with k, and passing to the associated graded in resolution (45) recovers
resolution (32). As a consequence, we obtain the following.

Proposition 7.1. Let A be a generic slice of rank ` > 2 of a supersolvable arrangement,
and let X = X(A′) be the complement of its decone. The homotopy module of the algebra
A = H•(X, k) is isomorphic to the graded module associated to the the first nonvanishing
higher homotopy group of X:

(47) MA
∼= gr•I π`−1(X)⊗ k.

7.2. Rescaling. Fix an integer q ≥ 1. The q-rescaling of a graded algebra A is the
graded algebra A[q], with A

[q]
i(2q+1) = Ai and A

[q]
j = 0 if (2q+1) - j, and with multiplication

rescaled accordingly. When taking the Yoneda algebra of A[q], the internal degree of the
Yoneda algebra of A gets rescaled, while the resolution degree stays unchanged:

(48) ExtA[q](k, k) = ExtA(k, k)[q].
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Similarly, the q-rescaling of a graded Lie algebra L is the graded Lie algebra L[q], with
L

[q]
2iq = Li and L

[q]
j = 0 if 2q - j, and with Lie bracket rescaled accordingly. Rescaling

works well with the holonomy and homotopy Lie algebras:

(49) hA[q] = h
[q]
A , gA[q] = g

[q]
A .

The Hilbert series of the enveloping algebras of g
[q]
A and gA are related as follows:

(50) h(U(g[q]
A ), t, u) = h(U(gA), tu2q, u2q+1).

Now let X be a connected, finite-type CW-complex. A simply-connected, finite-type
CW-complex Y is called a q-rescaling of X (over a field k) if the cohomology algebra
H•(Y, k) is the q-rescaling of H•(X, k), i.e.,

(51) H•(Y, k) = H•(X, k)[q].

Rational rescalings always exist: take a Sullivan minimal model for the 1-connected,
finite-type differential graded algebra (H•(X, Q)[q], d = 0), and use [31] to realize it by a
finite-type, 1-connected CW-complex, Y . The space constructed this way is the desired
rescaling. Moreover, Y is formal, i.e, its rational homotopy type is a formal consequence
of its rational cohomology algebra. Hence, Y is uniquely determined, up to rational
homotopy equivalence, among spaces with the same cohomology ring (though there may
be other, non-formal rescalings of X, see [24]).

Proposition 7.2. Let X be a finite-type CW-complex, with cohomology algebra A =
H•(X; Q). Let Y be a finite-type, simply-connected CW-complex with H•(Y ; Q) ∼= A[q].
If Y is formal, then

(52) π•(ΩY )⊗Q ∼= g
[q]
A .

Proof. Since Y is formal, the Eilenberg-Moore spectral sequence of the path fibration
ΩY → PY → Y collapses, yielding an isomorphism of Hopf algebras between the Yoneda
algebra of H•(Y ; Q) and the Pontryagin algebra H•(ΩY ; Q). From the rescaling assump-
tion, we obtain

(53) ExtA[q](Q, Q) ∼= H•(ΩY ; Q),

By Milnor-Moore [20], we find that gA[q]
∼= π•(ΩY ) ⊗ Q, as Lie algebras. Using (49)

finishes the proof. �

As a consequence, we obtain a quick proof of a special case of Theorem A from [24].

Corollary 7.3 ([24]). Suppose X and Y are spaces as above. If both X and Y are formal
and A is Koszul, then

(54) π•(ΩY )⊗Q ∼= (gr•(π1X)⊗Q)[q] .

Proof. Since A is Koszul, gA = hA. Since X is formal, gr•(π1X)⊗Q ∼= hA, cf. [31]. The
conclusion follows from (52). �

Remark 7.4. When X is formal (but not necessarily simply connected), a theorem
of Papadima and Yuzvinsky [25] states that the cohomology algebra A = H•(X; Q) is
Koszul if and only if the Bousfield-Kan rationalization XQ is aspherical. Now, by a
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classical result of Quillen [26], U(hA) ∼= grIπ Qπ1(XQ). More generally, it seems likely
that

(55) U(gA) ∼= U(π•(ΩX̃Q)) ⊗̂ grIπ Qπ1(XQ),

in view of a result of Félix and Thomas [12]. (Here again, Qπ1(XQ) acts on the left-hand
factor by the action induced from π1(XQ) on the universal cover X̃Q.)

However, if X is a hyperplane arrangement complement, then X is not in general
a nilpotent space. This means that we can expect to find such spaces X for which
πi(XQ) 6∼= πi(X)⊗Q. The first such example was found by Falk [9], who noted that the
complement X of the D4 reflection arrangement is aspherical, while its Bousfield-Kan
rationalization XQ is not. In general, then, we know of no way to relate gA with the
topological homotopy Lie algebra, π•(ΩX)⊗Q.

7.3. Redundant subspace arrangements. Let A = {H1, . . . ,Hn} be an arrangement
of hyperplanes in C`. If q is a positive integer, then A(q) = {H×q

1 , . . . ,H×q
n } is an ar-

rangement of codimension q subspaces in Cq`. For example, if A is the braid arrangement
in C`, with complement equal to the configuration space of ` distinct points in C, then
the complement of A(q) is the configuration space of ` distinct points in Cq.

Proposition 7.5. Let A be a hyperplane arrangement, with Orlik-Solomon algebra A =
H•(X; Q). Fix q ≥ 1, and let Y = X(A(q+1)) be the complement of the corresponding
subspace arrangement. Then:

(56) π•(ΩY )⊗Q ∼= g
[q]
A .

Proof. Clearly, Y is simply-connected. As shown in [5], H•(Y ; Q) is the q-rescaling of
H•(X; Q). Since A(q+1) has geometric intersection lattice, its complement Y is formal,
see [32, Prop. 7.2]. The conclusion then follows from Proposition 7.2. �

Corollary 7.6. Let A be a hypersolvable arrangement, satisfying either of the hypothesis
of Theorem 1.8. Then

π•(ΩY )⊗Q ∼= (Lie(MA[−2]) o hA)[q].

Example 7.7. Let A1 and A2 be the hyperplane arrangements from Example 6.2. De-
note by gi = gAi the respective homotopy Lie algebras, i = 1, 2. Consider the redundant
subspace arrangements A(2)

1 and A(2)
2 . Both are arrangements of 7 codimension-2 com-

plex subspaces of C8. Denoting their complements by Y1 and Y2, respectively, we have
π1(Y1) = π1(Y2) = 0 and H∗(Y1) ∼= H∗(Y2) as graded abelian groups.

Let π•(ΩYi) ⊗ Q be the respective (topological) homotopy Lie algebras. By Proposi-
tion 7.2, we have π•(ΩYi) ⊗ Q ∼= g

[1]
i . Making use of the previous calculations for the

arrangements A1 and A2, together with formula (50), we find that U(g[1]
i )p has rank

1, 0, 7, 0, 28, 0, 84, 5, 210 for 0 ≤ p ≤ 8, for both i = 1, 2. It follows that, for p ≤ 9, the
group πp(Yi)⊗Q = 0, except for π3(Yi)⊗Q ∼= Q7 and π8(Yi)⊗Q ∼= Q5.

However, for p = 9, the ranks of U(g[1]
i )p are 52 and 51, respectively. Hence,

π10(Y1)⊗Q ∼= Q17 and π10(Y2)⊗Q ∼= Q16,

and so Y1 6' Y2.
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