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Abstract We present some new results about the resonance varieties of
matroids and hyperplane arrangements. Though these have been the objects
of ongoing study, most work so far has focussed on cohomological degree 1.
We show that certain phenomena become apparent only by considering all
degrees at once.
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1 Introduction

Resonance varieties are a cohomological invariant that first appeared in the
study of the cohomology of one-dimensional fundamental group represen-
tations. Though they were first considered for topological spaces, they are
algebraic in nature, and they may be defined for any (differential) graded-
commutative algebra [31, 32].

The resonance varieties associated with the complement of a complex hy-
perplane arrangement are an interesting special case, and we mention in
particular the surveys [18, 36] for their description of the history and moti-
vation. Here, the underlying topological space is a complex, quasiprojective
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variety; however, it follows from the Brieskorn-Orlik-Solomon Theorem [23]
that the resonance varieties depend only on combinatorial data coming from
a matroid.

With that in mind, it is tempting to ask for a formula or an efficient
algorithm that expresses the resonance varieties in terms of the matroid.
However, this seems to be a difficult problem. In cohomological degree 1,
Falk and Yuzvinsky [19] have given a characterization, building on work of
Libgober and Yuzvinsky [22] as well as Falk [17]. In degree greater than 1,
there has been some progress (in particular [4, 9]), but comparatively little is
known. By way of contrast, Papadima and Suciu gave a closed formula for the
resonance varieties of exterior Stanley-Reisner rings (and right-angled Artin
groups) in [26], building on work of [1]. Although the situation for matroids
has some similarities, an analogous definitive result is so far out of reach.

Our main goal here is to develop some basic tools systematically. We con-
sider the behaviour of resonance varieties of matroids and arrangements under
such constructions as weak maps, Gale duality, and the deletion/contraction
constructions. Combining these basic ingredients allows us to compute the
resonance varieties of some graphic arrangements explicitly. A broader range
of phenomena appear in moving from degree 1 to 2: as an example, we find a
straightforward way to make hyperplane arrangements for which the Milnor
fibre F has nontrivial monodromy eigenspaces in H2(F,C).

A hyperplane arrangement is a matroid realization over C. Some results
about resonance from the literature are known for all matroids, while others
depend on realizability. Our approach is combinatorial, so matroids (rather
than arrangements) seem to be the appropriate objects for this paper. It
was recently shown in [28] that realizability imposes a non-trivial qualita-
tive restriction on resonance varieties, at least in positive characteristic. This
encourages us to keep track of the role of realizability.

1.1 Outline

The paper is organized as follows. We begin by recalling the definition of
the Orlik-Solomon algebra, viewed as a matroid invariant. We would like to
make use of the naturality of the construction; however, not all weak maps
of matroids induce homomorphisms of Orlik-Solomon algebras. In §2.3 we
impose a condition on weak maps to define a category M of matroids on
which the Orlik-Solomon construction is functorial.

In §3, we define resonance varieties and review known results about
some qualitative properties that distinguish the resonance varieties of Orlik-
Solomon algebras from the general case. For example, for a matroid M of
rank `, the resonance varieties are known to satisfy

Rp(M) ⊆ Rp+1(M)
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for 0 ≤ p < ` [15]. At least in the realizable, characteristic-zero case, reso-
nance varieties are unions of linear subspaces. In §3.4, we construct subspace
arrangements Sp(M) that contain them, based on a result of Cohen, Dimca,
and Orlik [7]. We find that in some interesting cases this upper envelope is
tight: i.e., Rp(M) = Sp(M).

In §4, we examine the effect of standard matroid operations on resonance.
Some results are known, some folklore, and others new. We use these to com-
pute some examples and find that certain special properties of components
of Rp(M) for p = 1 no longer hold for p ≥ 2.

In the last section, we revisit the combinatorics of multinets and singular
subspaces in terms of maps of Orlik-Solomon algebras as another attempt to
characterize components of resonance varieties. The results are inconclusive,
although the last example strongly suggests that some interesting combina-
torics remains to be uncovered.

2 Background

2.1 Arrangements and matroids

We refer to the books of Orlik and Terao [24] and Oxley [25] for basic facts
about hyperplane arrangements and matroids, respectively. If M is a matroid
on the set [n] := {1, 2, . . . , n} and k is a field, let V = kn, a vector space
with a distinguished basis we will call e1, . . . , en. The Orlik-Solomon algebra
Ak(M) is the quotient of an exterior algebra E := Λ(V ) by an ideal I = I(M)
generated by homogeneous relations indexed by circuits in M. More explicitly,
let ∂ be the derivation on E defined by ∂(ei) = 1 for all 1 ≤ i ≤ n. Then I is
generated by

{∂(eC) : circuits C ⊆ [n] of M} , (1)

where eC :=
∏
i∈C ei, with indices taken in increasing order. We will omit

the M or k from the notation Ak(M) where no confusion arises. If i ∈ M is a
loop, then C = {i} is a circuit and A(M) = 0.

We regard hyperplane arrangements as linear representations of loop-free
matroids. For us, an arrangement A over a field F is an ordered n-tuple of
(nonzero) linear forms (f1, . . . , fn), where fi ∈W ∗ for 1 ≤ i ≤ n, and W is a
vector space over F . We let M(A) denote the matroid on [n] whose dependent
sets index the linear dependencies of the fi’s. In particular, our arrangements
are all central, and we explicitly allow repeated hyperplanes.

If A is an arrangement, let Hi = ker(fi), a hyperplane in W , for 1 ≤ i ≤ n.
Let M(A) = W −

⋃n
i=1Hi, and U(A) = PW −

⋃n
i=1 PHi. If A is an arrange-

ment, we abbreviate Ak(A) := Ak(M(A)). If F = C, the complement M(A)
is a complex manifold, and the Brieskorn-Orlik-Solomon Theorem states that
Ak(A) ∼= H∗(M(A),k) as graded algebras.
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2.2 Projectivization

Suppose A(M) = E/I is the Orlik-Solomon algebra of a matroid M. Since
∂2 = 0, it follows ∂(I) = 0, so ∂ induces a derivation on A as well, which we
denote by ∂A. Let

V = ker(∂|V ) =
{
v ∈ kn :

n∑
i=1

vi = 0
}
,

and let A(M) denote the subalgebra of A generated by V .

Lemma 2.1. We have A(M) = ker ∂A.

Proof. Clearly A(M) ⊆ ker ∂A. By [24, Lemma 3.13], the chain complex (A, ∂)
is exact, so if ∂A(x) = 0, then x = ∂A(y) for some y ∈ A. If eI = ei1 · · · eik ∈
E, then ∂(eI) = (ei1 − eik)(ei2 − eik) · · · (eik−1

− eik), which implies ∂(eI) is

in the subalgebra generated by V . By applying ∂A to a representative in E
for y, we see x ∈ A(M). ut

Together with the exactness of (A, ∂A), this gives a short exact sequence of
graded k-modules,

0 A(M) A(M) A(M)[−1] 0.
∂

(2)

Of course, if M = M(A) where A is a complex arrangement, this sequence
has a well-known origin: the quotient mapM(A)→ U(A) makesM(A) a split
C∗-bundle over U(A), so the induced algebra homomorphism H∗(U(A),k)→
H∗(M(A),k) is injective. In fact, under the isomorphism H∗(M(A),k) ∼=
A(A), the Gysin map is identified with ∂A, and A(A) ∼= H∗(U(A),k): see [6]
or [13, §6.1] for details. With this in mind, we will call A(M) the projective
Orlik-Solomon algebra even if M does not have a complex realization.

2.3 A category of matroids

We would like to make use of maps of Orlik-Solomon algebras, so it will be
useful to have a functorial construction. For this, we recall the definition of
a weak map of matroids from [34, Ch. 9]. If M1 and M2 are matroids on sets
S1 and S2, respectively, we add a disjoint loop “0” to Mi to make a matroid
M+
i , for i = 1, 2.

Definition 2.2. A weak map f : M1 → M2 is a map of sets f : S1 ∪ {0} →
S2 ∪ {0} with the following properties: f(0) = 0, and for all I ⊂ S1, if f |I is
injective and f(I) is independent in M+

2 , then I is independent in M1.
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We will say a weak map f : M1 → M2 is non-degenerate if f−1(0) = {0}
and complete if, for every circuit C of M1, we have

∣∣C ∩ f−1(0)
∣∣ 6= 1. Clearly,

non-degenerate weak maps are complete.

Proposition 2.3. If f : M1 → M2 and g : M2 → M3 are complete weak maps,
so is g ◦ f . If f and g are non-degenerate weak maps, so is g ◦ f .

Proof. Weak maps are closed under composition, so the second assertion
is trivial, and it is enough to check that the composite of complete maps
is complete. Suppose instead that there is a circuit C in M1 and a unique
element i ∈ C for which g ◦f(i) = 0. Since f is complete, f(i) 6= 0. Then f(i)
is contained in a circuit C ′ ⊆ f(C) of M2. By assumption, j = f(i) is the
only element of C ′ which g(j) = 0. But g is complete, a contradiction. ut

In view of the previous result, matroids on finite sets form a category with
morphisms taken to be the complete weak maps, which we will denote byM.
Let M denote the (wide) subcategory whose morphisms are non-degenerate
weak maps. Our hypotheses (complete and non-degenerate) are designed to
make the Orlik-Solomon algebra and its projective version functorial, respec-
tively.

First, we note a categorical formality. If f : M1 → M2 is a complete weak
map and f(S1) ⊇ S2, then it is easy to see f is an epimorphism. While
we avoid trying to characterize epimorphisms, here is a convenient necessary
condition.

Lemma 2.4. If f : M1 → M2 is an epimorphism in M, then any element
i ∈ S2 − f(S1) is either a loop or it is parallel to an element of f(S1).

Proof. Suppose instead that some i ∈ S2−f(S1) is neither a loop nor parallel
to an element of f(S1). Define two maps g, h : M2 → U1,1: let g(j) = 0 for all
j ∈ S2 and h(j) = 0 for all j 6= i, but h(i) = 1. Then g and h are complete
weak maps, but g ◦ f = h ◦ f , so f is not an epimorphism. ut

By the obvious action on the distinguished basis, a weak map f : M1 → M2

induces a linear map V (M1)→ V (M2) which we will also denote by f .

Lemma 2.5. Suppose f : M1 → M2 is a complete weak map of matroids.
Then Λ(f) induces a well-defined map of k-algebras, A(M1) → A(M2). If f
is also non-degenerate, then it restricts to a map of projective Orlik-Solomon
algebras.

Proof. Write A(Mi) = Ei/Ii for i = 1, 2, and consider the homomorphism
Λ(f) : E1 → E2. For any circuit C in M1, we consider two cases. If 0 6∈ f(C),
then f(C) ∩ S2 is dependent, so the image of Λ(f)(∂(eC)) ∈ I2. If 0 ∈ f(C),
by completeness, f(ei) = f(ej) for some distinct i, j ∈ C, so Λ(f)(∂(eC)) = 0.
So Λ(f)(I1) ⊆ I2, as required.

If, moreover, f is non-degenerate, we see ∂|V (M2) ◦ f = f ◦ ∂|V (M1), by

evaluating on the distinguished basis. Then im(f |V (M1)
) ⊆ V (M2). Since

A(M1) is generated in degree 1, the image of Λ(f)|A(M1)
lies in A(M2). ut



6 Graham Denham

If f is a complete weak map, put A(f) = Λ(f) : A(M1)→ A(M2). If f is also
non-degenerate, let A(f) : A(M1)→ A(M2) denote the restriction.

Theorem 2.6. A and A are functors from M and M, respectively, to the
category of graded-commutative k-algebras. Moreover, A preserves epimor-
phisms.

Proof. If f is a morphism, A(f) is determined by its action in degree 1, where
A obviously preserves composition, so A is functorial. Now suppose f is an
epimorphism. The algebra A(M2) is spanned by monomials eI , where I is
independent.

If I ⊆ im(f), there exists a subset J ⊆ f−1(I) with |J | = |I|. If not, by
Lemma 2.4, we may replace some elements of I with parallel elements to form
a set I ′ ⊆ im(f) and find J as above with f(J) = I ′.

Since ei = ej for parallel elements in A(M2), in both cases we have
A(f)(eJ) = eI . So A(f) is a surjective ring homomorphism. ut

Example 2.7. The map f : U2,3 → U2,2 given by f(i) = i for i = 1, 2 and
f(3) = 0 is a weak map. Taking C = [3], we see f fails to be complete, and
Λ(f) fails to give a map of Orlik-Solomon algebras.

On the other hand, if M is the matroid of the graph

G =

1

2

3

4
5

6
7

8 , M(G)→ U3,4 :

1

2

3

4
4

1
2

3 (3)

then the map from the edges of G to the set [4] given by the edge labels
on the right defines a non-degenerate weak map M(G) → U3,4, because G
contains no three-cycles with distinct edge labels. ♦

We will end this section with two easy but useful observations. Suppose M
is a matroid on [n] and π is a partition of [n] into k parts. Let pπ : [n]→ [k]
be the map that sends i to s whenever i ∈ πs.

Proposition 2.8. pπ : M → U2,k is a morphism of M if and only if, when-
ever i and j are parallel in M, i and j are in the same block of π.

Definition 2.9. If M is a matroid on [n], we define an equivalence relation
on [n] by letting i ∼ j if and only if {i, j} is dependent. The simplification
of M, denoted Ms is, by definition, the induced matroid on the equivalence
classes. The natural map s : M→ Ms is a morphism of M.

The map A(s) : A(M)→ A(Ms) is easily seen to be an isomorphism, where
I(M) contains relations ei − ej if {i, j} is dependent in M.
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Remark 2.10. Clearly the complement of a hyperplane arrangement is un-
affected by the presence of repeated hyperplanes, so for topological purposes
there is no loss in assuming that the underlying matroid is simple. However,
we will make some use of the fact that the isomorphism A(s) is not an equality
in Theorem 4.5. ♦

3 Resonance varieties

Now suppose E = Λ(V ) is the exterior algebra over a (finite-dimensional)
k-vector space V . Suppose A and B are graded E-modules.

3.1 Definitions

For any v ∈ V , we have v · v = 0, so there is a cochain complex of k-
modules, (A, ·v), in which the differential is by right-multiplication by v. This
construction is natural, in the sense that if f : A→ B is a graded E-module
homomorphism, then for any v ∈ V ,

f : (A, ·v)→ (B, ·f(v)) (4)

is clearly a homomorphism of cochain complexes.
The resonance varieties of A are defined for all integers p, d ≥ 0 to be

Rpd(A) = {v ∈ V : dimkH
p(A, ·v) ≥ d} ,

and we abbreviate Rp(A) := Rp1(A). We note that our definition varies
slightly from the usual one (see, e.g., [27]) in that we do not assume ei-
ther that A itself is a k-algebra or that V = A1. The modules of greatest
interest are, in fact, algebras A = A(M) = E/I; however, we do allow I
to contain relations of degree 1, accommodating parallel elements in M. We
suggest distinguishing the two parameters by referring to Rpd(A) with p > 1
as “higher” resonance, versus “deeper” for d > 1. Our focus here is on the
former.

For any nonzero v ∈ V , clearly v ∈ Rpd(A) if and only if λv ∈ Rpd(A) for
any λ ∈ k×, so they determine projective subvarieties of PV .

3.2 Resonance of Orlik-Solomon algebras

From now on, we restrict our attention to Orlik-Solomon algebras, and ab-
breviate: Rp(M) := Rp(A(M)) and Rp(A) := Rp(M(A)) for matroids M and
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arrangements A, respectively. If G is a graph, let M(G) denote its matroid,
and Rp(G) := Rp(M(G)).

First we mention some properties of resonance varieties that specific to
Orlik-Solomon algebras. One such feature is a nestedness property discovered
by Eisenbud, Popescu and Yuzvinsky [15] and studied further in [4, 11].

Theorem 3.1. Let M be a matroid of rank `. Then

{0} ⊆ R0(M) ⊆ R1(M) ⊆ · · · ⊆ R`(M) ⊆ V . (5)

Proof. The inclusions Rp(M) ⊆ Rp+1(M) for 0 ≤ p ≤ ` − 1 were proven in
[15, Thm. 4.1(b)]. The authors work with arrangements, but their arguments
apply to all matroids. The inclusion Rp(M) ⊆ V for all p ≥ 0 is due to
Yuzvinsky, [35, Prop. 2.1]. ut

Another is the following. By contrast, this result depends on complex
geometry and a result due to Arapura [2]: for a full explanation, we refer to
[14].

Theorem 3.2. Let A be a complex hyperplane arrangement, and k a field of
characteristic zero. Then Rpk(A) is a union of linear components, for 0 ≤ p ≤
rank(A).

Remark 3.3. In characteristic zero, then, resonance varieties of realizable
matroids are subspace arrangements. Falk [20] has shown that this is not in
general the case for char k 6= 0: see also [18, Ex. 4.24]. So even for hyperplane
arrangements, the resonance varieties depend on the characteristic of the
field (unlike the Orlik-Solomon algebra itself). For a striking application of
resonance in characteristic 3, we refer to Papadima and Suciu [28]. ♦

A component W of a resonance variety is called essential if W ∩(k×)n 6= ∅.

Question 3.4. Assume chark = 0. Then the components ofR1(M) are linear
for any matroid M [22, Cor. 3.6]. Is Rpk(M) a union of linear components for
all matroids M, for p > 1?

The next result, due to Libgober and Yuzvinsky [22], is a qualitative property
of R1(M) which is both special to matroids and, we will see, to degree p = 1.

Theorem 3.5. Assume char k = 0. If R1(M) contains a component W of
dimension k > 0, there is an injective homomorphism A(U2,k+1) → A(M).
Conversely, the image of such a homomorphism in degree 1 lies in R1(M).

Proof. Multiplication in A
1
(U2,k+1) is zero, so this is just a reformulation of

the following result from [22]: if W is a component of R1(M), then for any
v, w ∈W , we have vw = 0. ut
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Next, we see that questions of resonance can be reduced to the projective
Orlik-Solomon algebra, via the short exact sequence (2).

Lemma 3.6. For any matroid M on [n] and v ∈ V , there is a short exact
sequence of cochain complexes

0 (A(M), v) (A(M), v) (A(M), v)[−1] 0.
∂

(6)

If char k - n, the sequence (6) is split.

Proof. The inclusion A(M) → A(M) makes A(M) an A(M)-module. Using
Lemma 2.1, it is easily checked that ∂ is a A(M)-module homomorphism.
With this, we see that the maps in the sequence (2) commute with multipli-
cation by v.

If n is nonzero in k, (left) multiplication by 1
n

∑n
i=1 ei gives a right inverse

to ∂, proving the second assertion. ut

With this, we see that the resonance of A and A differ only by a trivial
factor.

Proposition 3.7. Let M be a matroid on [n] of rank `. If char k - n, then
Rp(A(M)) = Rp(A(M)) for all 0 ≤ p ≤ `−1, and R`(A(M)) = R`−1(A(M)).
For all d ≥ 0, we also have

Rpd(A(M)) =
⋃
j≤d

Rpj (A(M) ∩Rp−1d−j(A(M)) (7)

Proof. The equality (7) is a direct consequence of Lemma 3.6. In particular,
for d = 1, we have

Rp(A(M)) = Rp(A(M)) ∪Rp−1(A(M)) (8)

for 0 ≤ p ≤ `. We prove Rp(A(M)) = Rp(A(M)) by induction. The case
p = 0 follows from (8). The induction step is obtained by combining (8) with
Theorem 3.1. ut

3.3 Top and bottom

The two ends of the resonance filtration (5) have straightforward descriptions.
First, it will be convenient to have some notation.

Definition 3.8. If π is a partition of [n] with k parts, let Pπ denote the
codimension-k subspace of kn given by equations∑

j∈πi

xj = 0
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for 1 ≤ i ≤ k. If k = 1, we recover V = P{[n]}. At the other extreme, if each
block of π is a singleton, then Pπ = {0}.

Dually, let Qπ denote the k-dimensional subspace of kn given as the span
of vectors ∑

j∈πi

ej

for 1 ≤ i ≤ k. Clearly, Pπ and Qπ are complementary subspaces (with respect
to the distinguished basis in V .)

Proposition 3.9. For any matroid M on [n], let π denote the partition of
[n] given by simplification (Definition 2.9.) Then R0

1(M) = Pπ.

Proof. The simplification map s : M → Ms (Definition 2.9) gives an isomor-
phism of complexes

A(s) : (A(M), v)→ (A(Ms), s(v))

for all v ∈ V . For a simple matroid, clearly R0(Ms) = {0}, so R0(M) =
s−1(0), which is the subspace Pπ. ut

At the other extreme, by the invariance of Euler characteristic, we have

`−1∑
p=0

(−1)p dimkH
p(A(M), v) = (−1)`−1β(M),

for any v ∈ V , where β(M) denotes Crapo’s beta invariant. We recall that
β(M) 6= 0 if and only if M is connected. If M = M(A) for an arrangement A,
it is usual to say A is irreducible to mean M(A) is connected.

If M(A) is connected, then for any v ∈ V , the nonzero Euler characteristic
implies that Hp(A(M), v) 6= 0 for some p. By Theorem 3.1, H`−1(A(M), v) 6=
0, which proves the following.

Proposition 3.10 ([35]). If M is connected of rank `, then R`−1(A(M)) =
V = P{[n]}.

Example 3.11. Consider the matroid M(G), where

G =

2
1

4
3

6
5 .

Using Proposition 3.9, we see R0(G) = P12|34|56 = V (x1 + x2, x3 + x4, x5 +
x6), a 3-dimensional subspace. Since M(G) is connected of rank 2, R1(G) =
R2(G) = V = V (x1 + · · ·+ x6). ♦
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3.4 Upper bounds

Most of the results we present in this paper give lower bounds for the res-
onance varieties: that is, conditions which imply nonvanishing cohomology.
Here, we give two upper bounds. The first uses a result of Schechtman and
Varchenko [30] to give a weak but easily stated upper bound.

Theorem 3.12. If M is a matroid of rank `, then

Rp(M) ⊆
⋃

X∈Lirr
≤p+1

(M)

P{X,[n]−X}

for all 0 ≤ p ≤ `.

In other words, if Hp(A(M), v) 6= 0, then there exists an irreducible flat X of
rank at most p+1 for which v ∈ P{X,[n]−X}; equivalently, for which v ∈ V (M)
and

∑
i∈X vi = 0.

Proof. In [30], the authors construct a map of cochain complexes

(F (M), d)
S(v) // (A(M), v) (9)

for each v ∈ V (M). The complex (F (M), d) is isomorphic to the k-dual of
(A(M), ∂A); in particular it is exact [30, Cor. 2.8] and does not depend on v.

Let v(X) :=
∑
i∈X vi. The determinant formula [30, Thm. 3.7] expresses

the determinant of S(v) in terms of powers of products of v(X)’s. In particu-
lar, it follows that Sp(v) is an isomorphism if v(X) 6= 0 for all X ∈ Lirr

≤p(M).
Suppose, then, that v(X) 6= 0 for all irreducible X of rank at most p + 1.
This implies (9) is an isomorphism up to degree p + 1, so Hq(A(M), v) = 0
for all q ≤ p, from which the claim follows. ut

Our second result gives a more refined bound for the largest (nontrivial)
resonance variety, based on the main result of Cohen, Dimca and Orlik [7].
Since their result applies to the cohomology of local systems on a hyperplane
complement, the proof of this bound requires that the matroid have a complex
realization.

Definition 3.13. Let us say that a subset of flats C covers M if there is a
surjective function f : [n]→ C for which i ∈ f(i) for all 1 ≤ i ≤ n. For a given
cover C, let PC =

⋂
X∈C P{X,[n]−X}, a linear subspace of V .

For each p ≥ 0, we define a subspace arrangement in V using M: let

Sp(M) =
⋃
C
PC ,

where the union is over all subsets C ⊆ Lirr
≤p+1(M) that cover M.

Finally, say a cover C of M is essential if |X| > 1 for all X ∈ C, and let
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Spess(M) =
⋃
C
PC ,

where the union is over essential covers C ⊆ Lirr
≤p+1(M).

We note that if M is irreducible of rank `, then S0(M) ⊆ · · · ⊆ S`(M) = V .

Theorem 3.14. If M is a complex-realizable matroid, then Rp(M) ⊆ Sp(M),
for all p ≥ 0.

Proof. Suppose A is a complex arrangement of rank ` and M = M(A). The
main result of [29] allows us to translate [7, Thm. 1] into the following state-
ment about resonance. That is, for v ∈ V (M), suppose that for some i ∈ [n],
whenever i ∈ X ∈ Lirr

<`(M), we have v(X) 6= 0. Then Hp(A(M), v) = 0 for all
p 6= `− 1.

If v ∈ R`−2(M), then, for all i ∈ [n], there exists some X for which i ∈ X
and v ∈ P{X,[n]−X}, since P{X,[n]−X} =

{
v ∈ V : v(X) = 0

}
. So

R`−2(M) ⊆
n⋂
i=1

⋃
X∈Lirr

<` :
i∈X

P{X,[n]−X},

=
⋃
C

⋂
X∈C

P{X,[n]−X}, (10)

= S`−2(M)

since C runs over all covers in Lirr
≤`−1. To obtain the result for p < ` − 1,

we consider the truncation Tp+1M of M to rank p + 1. This matroid is also
realizable (by intersecting A with a generic linear space of codimension p+1)
and L≤p(M) = L≤p(Tp+1M), so it is enough to apply (10) to Tp+1M. ut

Corollary 3.15. If W is a component of Rp(M) for a complex-realizable ma-
troid M and p ≥ 0, then there exists a cover C ⊆ Lirr

≤p+1(M) for which W ⊆ PC.

Corollary 3.16. If M is a complex-realizable matroid of rank `, then for all
p ≥ 0,

Rp(M) ∩ (k×)n ⊆ Spess(M). (11)

Proof. If X = {i}, then P{X,[n]−X} is contained in the coordinate hyperplane
xi = 0, so its intersection with (k×)n is empty. ut

We will see examples in the next section in which the upper bound above is
sharp: that is, the containment (11) is an equality.

Question 3.17. The bound given in Theorem 3.14 is, of course, completely
combinatorial, although the result we use from [7] is topological in nature.
Can the hypothesis that M is complex-realizable be dropped?
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4 Matroid operations and resonance

In this section, we systematically examine the behaviour of resonance under
several familiar matroid operations. In some cases, apparently nontrivial com-
ponents of resonance varieties can be obtained from tautological components
belonging to other matroids.

4.1 Naturality

In some cases, resonance behaves well under the morphisms of M from Sec-
tion §2.3. Combining Theorem 2.6 with (4), we see that if f : M1 → M2 is
morphism, then for all v ∈ V (M1), there is a map of complexes

A(f) : (A(M1), v)→ (A(M2), f(v)). (12)

Here is an important special case.

Proposition 4.1. If X is a flat of a matroid M, for any v ∈ V (MX), the
complex (A(MX), v) is a split subcomplex of (A(M), v).

Proof. The inclusion j : MX → M and projection φ : M→ MX given by

φ(i) =

{
i if i ∈ X;

0 otherwise

are both complete weak maps. Since φ◦j = id, the result follows by naturality.
ut

Lemma 4.2. Suppose that f : M1 → M2 is a morphism induced by the iden-
tity map on underlying sets. If the posets L≤k(M1) ∼= L≤k(M2) for some
integer k ≥ 1, then Rp(M1) ∼= Rp(M2) for 0 ≤ p ≤ k − 1.

Proof. Consider the map A(f) : (A(M1), v) → (A(M2), v), for some v ∈
V (M1). The hypotheses imply this is an isomorphism in degrees ≤ k, so
Hp(A(M1), v) ∼= Hp(A(M2), v) for all 0 ≤ p ≤ k − 1. ut

We say that a matroid M is k-generic for some k ≥ 0 if M has no circuits of
size k or smaller.

Proposition 4.3. Suppose M is k-generic. Then Rp(M) = {0} for all i,
0 ≤ p ≤ k − 1.

Proof. Let Fn denote the free matroid on [n] (the underlying matroid of the
Boolean arrangement.) Clearly A(Fn) = E, the exterior algebra, and it is
straightforward to check that Rp(E) = {0} for 0 ≤ p ≤ n. The claim then
follows from Lemma 4.2. ut
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Example 4.4 (Uniform matroids). Consider the uniform matroid U`,n
of rank ` on [n]. Assume n > `. Then U`,n is k-generic for all k < `, so
Rp(U`,n) = {0} for 0 ≤ p < ` − 1, and R`−1(U`,n) = V because U`,n is
connected. ♦

4.2 Sums, submatroids and duals

Let us single out three particularly well-behaved constructions. For conve-
nience, if X ∈ L(M), we abuse notation and identify V (MX) with its image
as a coordinate subspace in V (M), supported in the coordinates indexed by
X.

Theorem 4.5. Suppose M is a matroid of rank ` on [n]. Let X be any flat
of M, and M⊥ the dual matroid. Then:

Construction Resonance

(1) M = M1 ⊕M2 Rk(M) =
⋃
p+q=kRp(M1)×Rq(M2)

(2) submatroids Rp(MX) ⊆ Rp(M) ∩ V (MX) for all p ≥ 0
(3) duality R`−p(M) ∩ (k×)n = Rn−`−p(M⊥) ∩ (k×)n, for p ≥ 0

Proof. (1) is due to Papadima and Suciu [27, Prop. 13.1], since if M =
M1 ⊕ M2, then A(M) = A(M1) ⊗k A(M2). Claim (2) follows directly from
Proposition 4.1. Claim (3) appears as Theorem 27 in [10]. ut

4.3 Local components

If X is a flat of an arrangement M on [n], we define a partition π(X): let
X = X1∨X2 · · ·∨Xr be the decomposition of X into connected components.
Let π(X) be the partition given by i ∼ j ⇔ {i, j} ⊆ Xk, for all i, j, k, and
i ∼ i if i 6∈ X.

Proposition 4.6. For any matroid M, then for any flat X ∈ Lq(M), there
is an equality Pπ(X) = VX ∩ Rp(M) for all p with q − r ≤ p ≤ `, where
r = |π(X)|.

Proof. Since MX =
⊕r

i=1 MXi , in view of the product formula of Theo-
rem 4.5(1), it is enough to prove the claim when X is connected. In this case,
Pπ(X) = V X . By Proposition 3.10, Rq−1(MX) = V X , which is contained in
Rq−1(M) ∩ VX by Theorem 4.5(2). By propagation (Theorem 3.1),

V X ⊆ Rp(M) ∩ VX for q − 1 ≤ p ≤ `. (13)
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On the other hand, Rp(M) ⊆ V and V ∩ VX = V X , so (13) is an equality for
all p with q − 1 ≤ p ≤ `. ut

Example 4.7. Let us consider the dual to Example 3.11. That is, M⊥ =
M(G⊥), where

G⊥ =

1

2

3

4 5 6 .

By Proposition 4.3, we see R0(M⊥) = R1(M⊥) = {0}. By Proposition 4.6,
each of the circuits of size 4 contribute local components, so each of the
3-dimensional linear spaces P1|2|3456, P3|4|1256, P5|6|1234 are contained in

R2(M⊥).
By Theorem 4.5(3), we see R2(M⊥) also contains the component P12|34|56.

With the help of Macaulay2 [21], we find that the upper bound from Theo-
rem 3.14 is sharp, so

R2(M⊥) = S2(M⊥) = P1|2|3456 ∪ P3|4|1256 ∪ P5|6|1234 ∪ P12|34|56.

Since M⊥ is irreducible of rank 4, we have R3(M⊥) = R4(M⊥) = P123456, by
Proposition 3.9. ♦

Remark 4.8. As an aside, let’s recall an application to the cohomology of
the Milnor fibration of a hyperplane arrangement, a full treatment of which
can be found in the paper of Papadima and Suciu [28]. The matroid M⊥ is
realized by the arrangement defined by

Q = (x1 − x2)(x2 − x3)(x3 − x4)(x1 − x4)(x1 − x5)(x3 − x5).

Each part of π = 12|34|56 has even length, so the vector d = (1, 1, 1, 1, 1, 1) ∈
R2

k(M⊥) if char k = 2. From an application of the tangent cone formula (see,
for example, [12]), it follows −1 is a monodromy eigenvalue of H2(F,C),
where F = Q−1(1), the Milnor fibre of the arrangement. Our point here
is that an apparently nontrivial cohomological phenomenon can result from
matroid operations applied to a rather trivial example (Example 3.11). ♦

4.4 Deletion-contraction

In the case of complex hyperplane arrangements, Cohen [8] showed that there
is a long exact sequence relating cohomology of a local system on the com-
plement of an arrangement, its deletion, and its restriction. We will use the
combinatorial analogue here in order to examine the behaviour of resonance
varieties under deletion and contraction.
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If M is a matroid and i0 is an element which is not a loop, let M′ := M−{i0}
and M′′ := M/i0 denote the deletion and contraction matroids, respectively.
From [24, Thm. 3.65], there is a short exact sequence of k-modules

0 A(M′) A(M) A(M′′)[−1] 0
j φ

(14)

where the map φ is defined on monomials by

φ(ei0eS) = eS ,

and φ(eS) = 0 if i0 6∈ S. The inclusion j is a ring homomorphism, induced
by the morphism M′ ↪→ M, so (14) is a sequence of A(M′)-modules.

For any v ∈ V (M′), then, we obtain a short exact sequence of complexes,

0 (A(M′), v) (A(M), v) (A(M′′), v)[−1] 0
j φ

(15)

where we identify V (M′) and V (M′′) with the coordinate hyperplane
Hi0 := Pi0|1,...,î0,...,n ⊆ V (M).

Proposition 4.9. Let (M,M′,M′′) be a deletion-contraction triple. Then, for
all integers p ≥ 0 and k ≥ j ≥ 0, we have the following inclusions:

Hi0 ∩R
p
k(M)−Rpj+1(M′) ⊆ Rp−1k−j(M

′′); (16)

Rp−1k (M′′)−Rpj+1(M) ⊆ Rp+1
k−j(M

′); (17)

Rpk(M′)−Rp−2j+1(M′′) ⊆ Rpk−j(M). (18)

Proof. Given v ∈ Hi0 , consider the long exact sequence in cohomology of
(15). By exactness, we have

dimkH
p(A(M), v) ≤ dimkH

p(A(M′), v) + dimkH
p−1(A(M′′), v),

from which the first containment easily follows. The remaining two are ob-
tained in the same way. ut

We note that, by putting j = 0 and k = 1, we can erase the subscripts that
keep track of depth.

Corollary 4.10. Suppose M is k-generic. Then for any element i0,

Rp(M− {i0}) ⊆ Rp(M),

for all 0 ≤ p ≤ k.

Proof. If M is k-generic, the contraction M/i0 is (k − 1)-generic. The result
then follows by Propositions 4.9(18) and 4.3. ut
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Since all simple matroids are 1-generic, the situation for p = 1 is particularly
nice. The next example shows that, in general, Rp(M′) 6⊆ Rp(M) for p > 1.

Example 4.11. Let M = M(G1) be the matroid of the graph shown in Fig-
ure 1. Deleting the horizontal edge gives the graphic matroid of Example 4.7,
which we denote for the moment by M′. We saw W := P12|34|56|7 ⊆ R2(M′):
let us parameterize

W = {(−a, a, b,−b,−c, c, 0) : a, b, c ∈ k} .

If v ∈ W , then v 6∈ R0(M′′) provided either a + b 6= 0 or c 6= 0. From
Proposition 4.9(18), we see W ⊆ R2(M). We can repeat this twice to find
W ⊆ R2(G2) as well, where G2 is the graph obtained from K5 by deleting
an edge.

However, the same argument does not allow us to conclude W ⊆ R2(K5):
if we contract the bottom edge, we see W is now contained in R0 of the con-
traction (Proposition 3.9), so Proposition 4.9 does not apply. Indeed, it turns
out that W 6⊆ R2(K5). Since W ⊆ S2(M(K5)), though, our upper bound is
of no use here, and we are forced to verify this with a direct calculation. ♦

⊆ R2(G1)

−a
a −b

b

−c c

0

⊆ R2(G2)

−a
a −b

b

−c c

0

00

6⊆ R2(K5)

−a
a −b

b

−c c

0

00

0

Fig. 1 Adding edges may not preserve resonance (Example 4.11)

Along the same lines, we see also that a component of R2(M) contained
in a coordinate hyperplane need not be a component of the deletion R2(M′).

Example 4.12. Consider the matroid of the graph G from Example 2.7,
ordered as shown in (3). With the help of Macaulay 2 and Theorem 3.14, we
see

W := {(−a− b, b, 0, a, b, a,−a,−b) : a, b ∈ k}

is a component of R2(G). Let G′ be the graph obtained by deleting the edge
with label 0 (see Figure 2). One argues that W 6⊆ R2(G′) using Theorem 3.14
as follows. If v ∈ W and a, b 6= 0, we choose an edge incident to a degree
vertex, and check that the only irreducible flatsX that contain it have v(X) 6=
0. It follows that v 6∈ S2(G′). ♦
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W 6⊆ R2(G′)

−a− b

ba

b
a

−a
−b

W ⊆ R2(G)

−a− b

b

0

a

b
a

−a
−b

W ⊆ R1(G′′)

−a− b

−a− b

b

b

a
a

Fig. 2 Deletion may not preserve resonance (Example 4.12)

4.5 Parallel connections

Here, we consider another matroid construction through which resonance
varieties can be traced. The underlying data is the following. Suppose M1 and
M2 are matroids on ground sets S1 and S2, respectively, and X = S1 ∩ S2

is a modular flat of M1 and (M1)X = (M2)X . The (generalized) parallel
connection M1 ‖X M2 is the matroid on S1 ∪ S2 obtained from M1 ⊕M2 by
identifying the common copy of X – see [25] for details. Let M12 = (M1)X =
(M2)X .

3

1

4

2

6

5 ‖124

4

1

7

2 8

9

=

1

4

2

3

5

6

7

8

9

Fig. 3 Parallel connection

The Orlik-Solomon complex of the parallel connection can be described
as follows. We begin with the degree-1 part. Let ij : M12 → Mj denote the
inclusions, for j = 1, 2. The identification map φ : S1 t S2 → S1 ∪ S2. These
are all morphisms of M, and they fit in a short exact sequence:

0 V (M12) V (M1)⊕ V (M2) V (M1 ‖X M2) 0
i1⊕−i2 φ

By restricting, we also obtain:

0 V (M12) V (M1)⊕ V (M2) V (M1 ‖X M2) 0
φ

(19)
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Now let P denote the pushout of graded k-algebras:

A(M12)

p

A(i1) //

−A(i2)

��

A(M1)

��
A(M2) // P

(20)

We can express the algebra P variously as

P ∼= k⊗A(M12)

(
A(M1)⊗k A(M2)

)
,

∼= k⊗A(M12) A(M1 ⊕M2) by [27, Prop. 13.1];
∼= A(M1 ⊕M2)//A(M12) see, e.g., [5, p. 349];
∼= A(M1 ‖X M2).

Remark 4.13. We note that, since X is modular in M1, A(M1) is a free
A(M12)-module (see [33]). This implies A(M1 ⊕ M2) is also a free A(M12)-
module. Taking Hilbert series, we obtain

h(A(M1 ‖X M2, t) = h(A(M1), t)h(A(M2), t)/h(A(M12), t). (21)

This amounts to the classical formula relating the characteristic polynomi-
als of the four matroids, so the diagram (20) can be taken as an algebraic
refinement. ♦

We now restrict to the classical parallel connection, where X consists of
a single element. The description above is particularly straightforward in
this case: in particular, the linear map φ in (19) is an isomorphism, and we
show next that it induces an algebra isomorphism. In the case of complex
hyperplane arrangements, the maps below come from maps of spaces: see
[16] and [12, §7]. If X = {i} for some i ∈ S1 ∪ S2, let i′ denote its image in a
copy of S2 disjoint from S1.

Theorem 4.14. If X = {i}, there is a short exact sequence

0 A(M1 ‖{i}M2)[−1] A(M1 ⊕M2) A(M1 ‖{i}M2) 0.
A(φ)

and an isomorphism A(M1)⊗k A(M2) ∼= A(M1 ‖{i}M2).

Proof. Since φ is surjective, so is A(φ) (Theorem 2.6), and A(M1 ‖{i}M2) ∼=
A(M1 ⊕ M2)/(r), where r = ei − ei′ . On the other hand, multiplication by
r gives a degree-1 map A(M1 ⊕ M2)/(r) → A(M1 ⊕ M2). Since r is easily
seen to be nonresonant, this map is injective: that is, an isomorphism onto
its image, (r) = kerA(φ). It follows that the sequence is exact.
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To prove the second claim, note the image of the restriction of A(φ) to
A(M1)⊗kA(M2) is contained in A(M1 ‖{i}M2), since the source is generated in

degree 1, where the situation is that of (19). Since the target is also generated
in degree 1, it follows the map is surjective. To conclude it is an isomorphism,
we compare Hilbert series using (21) and (2). ut

The effect on resonance varieties is immediate.

Corollary 4.15. If X = {i}, the map φ : V (M1) ⊕ V (M2) → V (M1 ‖X M2)
restricts to an isomorphism for each p ≥ 0:

Rp(M1 ⊕M2) ∼= Rp(M1 ‖X M2).

5 Singular subspaces and multinets

So far, we have seen that the resonance varieties of a matroid in top and bot-
tom degrees are easy to account for, and that various resonance components
can be obtained from these by comparing with submatroids, duals, deletion
and contraction. The lower bounds obtained in this way sometimes match
the upper bound given by Theorem 3.14.

Some quite special matroids are known to have additional components in
R1(M), however. We will assume from now on that chark = 0. Building on
work of Libgober and Yuzvinsky [22] as well as Falk [17], Falk and Yuzvin-
sky [19] have characterized these in terms of auxiliary combinatorics. This is
the notion of a multinet, and we we briefly recall the construction from [19]
in §5.1 with a view to higher-degree generalizations. We refer to Yuzvinsky’s
survey [36] in particular for a complete introduction.

Some first steps generalizing this theory to Rp(M) for p > 1 appear in [9],
in the case of complex hyperplane arrangements, as well as in forthcoming
work of Falk [3]. We interpret these constructions in terms of maps of Orlik-
Solomon algebras, as in §4.

5.1 R1(M): multinets

Definition 5.1. If M is a matroid on [n] and k is an integer with k ≥ 3,
a (k, d)-multinet is a partition L := {L1, . . . ,Lk} of [n] together with a set
X ⊆ Lirr

2 (M) with the following four properties:

1. |Ls| = d for all 1 ≤ s ≤ k;
2. If i, j ∈ [n] belong to different parts of the partition L, then they span a

flat in X ;
3. For any X ∈ X , the number |Ls ∩X| is independent of s;
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4. For any i, j ∈ Ls for some s, there is a sequence i = i0, i1, . . . , ir = j for
which span {iq−1, iq} 6∈ X for all 1 ≤ q ≤ r.

The original (equivalent) formulation in [19] replaces M with its simplification
Ms and records the number of parallel elements with a multiplicity function.
We will say that a simple matroid supports a multinet if it is the simplification
of a matroid with a partition as in Definition 5.1.

Theorem 5.2 (Thms. 2.3, 2.4, [19]). R1
k(M) contains an essential com-

ponent if and only if M supports a multinet.

Explicitly, this component is the linear space QL ∩ V (Definition 3.8). Their
construction can be interpreted in terms of maps of Orlik-Solomon algebras
as follows. First, we note that if L is a multinet, the partition satisfies the
hypothesis of Proposition 2.8, so there is a morphism pL : M → U2,k and a
surjection

A(pL) : A(M)→ A(U2,k).

The more interesting aspect is the existence of a right inverse to A(pL).
Multinets give the following construction [19].

Proposition 5.3. If (L,X ) is a multinet on M, there is a ring homomor-
phism iL : A(U2,k)→ A(M) defined by

iL(es) =
1

|Ls|
∑
i∈Ls

ei for all 1 ≤ s ≤ k,

which restricts to a map iL : A(U2,k)→ A(M).

We note that A(pL) ◦ iL = id. From this it follows that iL is injective in
cohomology. From Example 4.4, R1(U2,k) = V (U2,k), and its image in R1(M)
is just QL ∩ V .

Example 5.4 ([19]). Let M be the matroid of the B3 root system, giving
each of the short roots multiplicity two. The corresponding hyperplane ar-
rangement is defined by the polynomial x2y2z2(x−y)(x+y)(x−z)(x+z)(y−
z)(y+z). Numbering the points of the matroid {1, 1′, 2, 2′, 3, 3′, 4, 5, 6, 7, 8, 9},
the dependencies are shown in Figure 4. The multinet L = {11′89|22′67|33′45}
has X = Lirr

2 (M), so QL∩V is a 2-dimensional, essential component ofR1(M).
Returning to the upper bound of Corollary 3.16, let C = Lirr

2 (B3), an
essential cover. By direct computation, PC has dimension 2, so it equals the
essential component computed above. ♦

5.2 R≥1(M): singular subspaces

The Multinet Theorem 5.2 does not yet have a complete higher analogue.
Here, we indicate some first steps in that direction, beginning with a definition
from [9, §3].
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1

2

3

8

6

7
1, 1′

4 2,2′
5

9

3, 3′

Fig. 4 The (3, 4)-multinet for the B3 root system

Definition 5.5. A subspace W ⊆ V (M) is called singular if the multiplica-
tion map Λk(W )→ Ak(M) is zero, where k = dimW . The rank of W is the
largest q for which Λq(W )→ Aq(M) is not the zero map.

Proposition 5.6. If φ : A(Uq+1,k+1) → A(M) is a graded homomorphism
which is injective in degree 1, then the degree-1 part of imφ is a singular
subspace of dimension k and rank at most q.

Conversely, if W is a singular subspace of rank q in V (M), there exists a
map φ as above for which W = (imφ)1.

Proof. Let W ⊆ V be a subspace of dimension k. By inspecting the Orlik-
Solomon relations (1), we can identify A(Uq+1,k+1) with a truncated exterior
algebra Λ(W )/(Λq+1(W )).

If a map φ : A(Uq+1,k+1)→ A(M) is given, let W = φ(V (Uq+1,k+1)). Since
A(Uq+1,k)p = 0 for p > q, its image W is singular of rank at most q.

Conversely, the hypothesis implies that the natural map Λ(W ) → A(M)
factors through A(Uq+1,k+1) ∼= Λ(W )/(Λq+1(W )). ut

If chark = 0, then components ofR1(M) are just the same as rank-1 singu-
lar subspaces, by Theorem 3.5. For higher rank, the situation is more subtle.
If W is a singular subspace of rank q and dimension k, the condition implies
that the natural homomorphism Λ(W )→ A(M) factors through A(Uq+1,k+1),
a truncated exterior algebra. If the resulting map A(Uq+1,k+1)→ A(M) is in-
jective in cohomology, then W ⊆ Rq(M).

Example 5.7. The graph G from Example 4.12 provides an interesting ex-
ample of a singular subspace. R1(G) consists of the four local components
from the three-element flats. R2(G) is more complicated. We find two essen-
tial components by first constructing a singular subspace. We label the ver-
tices of G with {1, 2, . . . , 5} so that edge i has vertices (i, i+ 1) for i = 1, 2, 3.
If edge i = {s, t} and s < t, let fi = xt − xs ∈ k[x1, . . . , x5]. The linear forms
{fi : 1 ≤ i ≤ 8} define the graphic arrangement A(G) with matroid M(G).
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Following the approach of Cohen et al. [9], we observe that there is a linear
relation of cubic polynomials

f1f7f8 + f2f5f8 + f3f5f6 = f4f6f7.

This implies that the polynomial mapping Φ : U(A(G)) ⊆ P4 → P2 given by

Φ(x) = [f1f7f8 : f2f5f8 : f3f5f6]

has its image inside the projective complement of the arrangement consisting
of the three coordinate hyperplanes together with the projective hyperplane
orthogonal to [1 : 1 : 1]. The existence of the induced map in cohomology
Φ∗ : A(U3,4)→ A(G) shows that W is a rank-2 singular subspace, by Propo-
sition 5.6, where

W =
{
v ∈ k8 : v = (a, b, c, d, b+ c, c+ d, d+ a, a+ b) and a+ b+ c+ d = 0

}
.

Below, we will show Φ∗ is split, which implies that H2(Φ∗) is injective, and
W ⊆ R2(G).

We proceed indirectly to show that W is maximal (i.e., a component.)
First, using the cover C = Lirr

2 (M) = {156, 267, 378, 458}, we obtain a 3-
dimensional linear space

PC =
{
v ∈ k8 : v = (c+ d, d+ a, a+ b, b+ c, a, b, c, d) and a+ b+ c+ d = 0

}
.

Note PC is not maximal in S2(G): for example, if C′ = {1234, 156, 378}, PC (
PC′ . Up to symmetry, though, this is the only subspace in S2(G) that properly
contains PC , and it has dimension 4. By checking a single v ∈ PC′ − PC , we
see PC′ 6⊆ R2(G).

Now we note that the matroid M(G) is self-dual, and we may identify
M(G) with its dual via the permutation σ = [56784123]. Since W is essen-
tial, σ(W ) ⊂ R2(G) as well, by Theorem 4.5(3). However, σ(W ) = PC , so
PC ⊆ R2(G) as well. It follows that W and σ(W ) are both (maximal) linear
components of R2(G).

In order to try to imitate the multinet construction (Theorem 5.2), we give
the inner four edges of G multiplicity 2, and denote the (non-simple) matroid

by M̃. Let L be the partition of {1, 2, 3, 4, 5, 5′, 6, 6′, 7, 7′, 8, 8′} given by

L =

1

78
∣∣

2
5

8′ ∣∣ 3

5′ 6

∣∣
4

6′

7′
.

Then W ∼= QL ∩ V (M̃).

The map A(U3,4)→ A(M̃) given by sending the ith generator to the sum
of elements in the ith block of L, for 1 ≤ i ≤ 4, restricts to Φ∗ above. To
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construct a left-inverse, recall that in Example 2.7 we found a morphism
f : M→ U3,4 inM. A simple check shows that −A(f) ◦Φ∗ is the identity on
A(U34), so Φ∗ is indeed split. ♦

We continue this example by observing that not every essential component
of R2(G) is a singular subspace.

Example 5.8 (Example 5.7, continued). The second component PC =

σ(W ) can also be expressed in terms of a partition: σ(W ) ∼= QL∗ ∩ V (M̃) for

another non-simple matroid M̃ , where

L∗ = 2

3

5

∣∣ 3′

4
6

∣∣
1

4′
7 ∣∣

1′

2′
8

.

The image of Λ3(σ(W )) in A(G) is nonzero, so this subalgebra generated by
σ(W ) does not factor through A(U3,4). ♦

However, the partitions L and L∗ above look qualitatively rather similar.
One might hope, then, that Theorem 5.2 admits a combinatorial generaliza-
tion that treats both components above equally.

Question 5.9. By the theory of multinets, every component of R1(M) comes
from the tautological resonance of a rank-2 matroid, via a split surjection
of Orlik-Solomon algebras. Does every component of Rp(M) come from a
matroid of rank p+ 1, for all p ≥ 1?

Our last example shows that we cannot always find a uniform matroid
with this property for p = 2, unlike for p = 1; however, since the only simple
matroids of rank 2 are uniform, this should not necessarily be seen evidence
that the answer is negative.

Acknowledgment. The author would like to thank Hal Schenck for the
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