
A NOTE ON DE CONCINI AND PROCESI’S CURIOUS IDENTITY

GRAHAM DENHAM

Abstract. We give a short, case-free and combinatorial proof of de Concini and Procesi’s
formula from [1] for the volume of the simplicial cone spanned by the simple roots of any
finite root system. The argument presented here also extends their formula to include the
non-crystallographic root systems.

1. Introduction

Let Φ ⊆ R
n be a finite root system with base ∆, and let W = W (Φ) denote the reflection

group of Φ. Let σ∆ be the positive cone spanned by the set of simple roots ∆:

(1) σ∆ =

{
∑

α∈∆

cαα : cα ∈ R>0 for all α ∈ ∆

}
.

Let C∆ be the normal cone to σ∆: this is usually called the fundamental chamber in the ar-
rangement A of reflecting hyperplanes of W . If τ is a cone in R

n, define the volume of τ
as ν(τ) = vol(τ ∩ Dn)/vol Dn, where Dn is the unit ball centered at the origin. Finally, let
{d1, d2, . . . , dn} denote the degrees of W : we refer to [2] for background and notation.

Recall that the action of W on R
n by reflections is free on the complement of the hyperplanes A.

The induced action on chambers is simply transitive. Since the chambers partition the complement
of A and W acts by isometries, ν(gC∆) = 1/ |W | = 1/

∏n

i=1 di, for any chamber gC∆.
While not so straightforward, it turns out that the volume of the cone σ∆ is also rational, and

has a nice expression:

Theorem 1 (Theorem 1.3 in [1]). If Φ is crystallographic, the volume of the cone σ∆ is

(2) ν(σ∆) =

n∏

i=1

di − 1

di

.

De Concini and Procesi derive this result from the “curious identity” of their title. Their proof
of the identity is accompanied by a note by Stembridge that gives an elegant, alternate proof via
character theory.

The purpose of this note is to offer yet another argument. Using the combinatorial theory of
real hyperplane arrangements, one can prove (2) directly, in slightly more generality (§2). Then,
in the crystallographic case, de Concini and Procesi’s identity is recovered by adding up normal

cones around the fundamental alcove of the associated affine root system Φ̃ (in §3).

2. The volume formula

Let V ⊆ R
n consist of the union of the reflecting hyperplanes, together with those vectors in

the span of any proper subset of any base g∆. Clearly R
n −V is a dense, open subset of R

n. The
key result is the following, whose proof appears at the end of this section.
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Theorem 2. For any x ∈ R
n − V , the number of g ∈ W for which x ∈ gσ∆ is independent of x

and equal to
∏n

i=1(di − 1).

In another formulation,

Corollary 3. For a finite root system Φ and x ∈ R
n − V , the number of choices of base ∆ for Φ

for which x is in the positive cone of ∆ equals
∏n

i=1(di − 1).

Proof. If ∆, ∆′ are both bases for Φ, then ∆′ = g∆ for some g ∈ W , and σ∆′ = gσ∆. �

Since each cone gσ∆ has the same volume,

|W | · ν(σ∆) =
∑

g∈W

ν(gσ∆)

=

n∏

i=1

(di − 1)

by Theorem 2, and we obtain the volume formula as a corollary:

Theorem 1+. If Φ is any finite root system, the volume of the cone σ∆ is

ν(σ∆) =

n∏

i=1

di − 1

di

.

(Note that, if the rank of Φ is less than n, the least degree is 1, and both sides are zero.)

2.1. Hyperplane arrangements. The terminology used below may be found in the book of
Orlik and Terao [3]. We recall a collection of hyperplanes A in R

n is central if all H ∈ A contain
the origin, and essential if the collection of normal vectors span R

n.
Recall that A has an intersection lattice L(A) of subspaces, ranked by codimension. The

Poincaré polynomial of A is defined to be

π(A, t) =
∑

X∈L(A)

µ(0̂, X)(−t)rank(X),

where µ is the Möbius function. If A is essential, π(A, t) is a polynomial of degree n. The following
classical theorem is a main ingredient in our proof.

Theorem 4 ([4]). If A = A(Φ) is an arrangement of (real) reflecting hyperplanes, then

(3) π(A, t) =

n∏

i=1

(1 + (di − 1)t),

where {di} are the degrees of the reflection group.

If H0 is any hyperplane (not necessarily through the origin), let AH0 denote the set {H ∩ H0 : H ∈ A},
regarded as a hyperplane arrangement in H0. We say H0 is in general position to A if X ∩ H0 is
nonempty for all nonzero subspaces X ∈ L(A).

Lemma 5. If H0 is in general position to a central arrangement A in R
n, then the number of

bounded chambers in AH0 equals the coefficient of tn in π(A, t).

Proof. It follows from the definition of general position that L(AH0) = L(A)≤n−1, where the
latter is the truncation of the lattice L(A) to rank n− 1. Therefore π(A, t) = π(AH0 , t) + btn for
some b. By a theorem of Zaslavsky [6], the number of bounded chambers of any arrangement B
equals (−1)rankBπ(B,−1). Substituting t = −1 shows b is the number of bounded chambers in
AH0 , since A itself has none. �

Let ε > 0 be a fixed choice of positive, real number.
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Lemma 6. For any x ∈ C∆ ∩ (Rn − V ) let Hx be the hyperplane normal to x, passing through
εx. Then Hx is in general position to A.

Proof. Suppose X ∩ Hx = ∅ for some nonzero intersection of hyperplanes X . Say X = ∩α∈SHα,
where S ⊆ Φ. Since X 6= 0, the roots S do not span R

n. Since X and Hx are parallel, x is a
linear combination of the roots S; then x ∈ V , a contradiction. �

For each y ∈ R
n with (x, y) > 0, let yHx denote the unique, positive multiple of y which lies in

Hx. Note that each chamber of AHx has the form C ∩ Hx for some chamber C of A. If C ∩ Hx

is bounded, then C is just a cone over C ∩ Hx with retraction y 7→ yHx . In particular, (x, y) > 0
for all y ∈ C. For any x ∈ R

n − V , let

(4) Bx =
{
g ∈ W : (x, gx) > 0 and (gx)Hx is in a bounded chamber of AHx

}
.

Since x 6∈ V , the orbit Wx has exactly one point in each chamber of A. It follows that |Bx| is the
number of bounded chambers of AHx .

Lemma 7. For any x ∈ R
n − V , we have

Bx =
{
g ∈ W : g−1x ∈ σ∆

}
.

Proof. A chamber C ∩ Hx of AHx is bounded if and only if C does not contain a ray in Hx.
Equivalently, all points in C ∩Hx (or, just as well, in C) have positive inner product with respect
to x.

That is, g ∈ Bx if and only if, for all y ∈ C∆,

(gy, x) > 0 ⇐⇒ (y, g−1x) > 0 ⇐⇒ g−1x ∈ σ∆,

since σ∆ is the normal cone to C∆. �

2.2. Proof of Theorem 2. Fix a point x ∈ R
n − V . By construction, x lies in some (open)

chamber C. Without loss of generality, C = C∆. Let Hx be the hyperplane normal to x, containing
εx. Using Lemmas 5, 6, and equation (3), we see the number of bounded chambers in AHx equals∏n

i=1(di − 1).
On the other hand, the number of bounded chambers of AHx equals |Bx|; by Lemma 7, this

equals the number of g ∈ W for which x ∈ gσ∆. �
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(b) Chambers of AHx and the orbit of x

Figure 1. The A2 root system

Example 1. Let ∆ = {α, β} be the base of the A2 root system, shown in Figure 1(a). Recall
d1 = 2, d2 = 3; then ν(σ∆) = 1·2

2·3 . In Figure 1(b), the chambers of AHx are labelled 1 through 4.
As expected, two chambers (labelled 2 and 3) are bounded. For a given x ∈ C∆, points gx in its
orbit are marked with a “◦” if (x, gx) ≤ 0. If (x, gx) > 0, the point gx is black where the chamber
(gx)Hx is bounded and “•” otherwise.
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3. The identity

Now suppose that Φ ⊆ R
n is an irreducible, crystallographic root system of rank n. Let Φ̃

denote the affine root system of Φ, with base ∆̃ = ∆ ∪ {α0}. Let D̃ denote the extended Dynkin

diagram of Φ. For each simple root αi ∈ ∆̃, let Φi be the sub-root system of Φ with base

∆i = ∆̃ − {αi}. Then Φ = Φ0, and recall that the Dynkin diagram of Φi is obtained by deleting

the vertex corresponding to αi from D̃.

For each i, 0 ≤ i ≤ n, let (d
(i)
1 , . . . , d

(i)
n ) denote the degrees of Φi. De Concini and Procesi

found that, for each irreducible type, an unexpected identity held:

Theorem 8 (Theorem 1.2 of [1]). For an irreducible, crystallographic root system Φ of rank n,

(5)

n∑

i=0

n∏

j=1

d
(i)
j − 1

d
(i)
j

= 1.

By (re)deriving their result from Theorem 1, a geometric interpretation becomes apparent.

Proof. Let A0 denote the fundamental alcove of Φ. This is a simplex bounded by the (affine)
reflecting hyperplanes {Hαi

: 0 ≤ i ≤ n}. For each i, let vi be the vertex of A0 that is opposite

the face contained in Hαi
. The normal cone to A0 at vi is spanned by the vectors ∆̃−{αi}, so it

is just the cone σ∆i
. Then

ν(σ∆i
) =

n∏

j=1

d
(i)
j − 1

d
(i)
j

,

by the volume formula (2). However, the normal cones to the vertices of any polytope partition
a dense open subset of R

n, so their volumes sum to 1. �

Remark 1. We have seen that the volume formula (2) also holds for finite, noncrystallographic
root systems. For the irreducible types, (2) gives

Type I2(m) H3 H4

ν(σ∆) (m − 1)/(2m) 3/8 6061/14 400

Although the identity (5) no longer makes sense, one might still be tempted to compute the
left side formally for diagrams that extend H3 or H4 by a vertex in such a way that all proper
subdiagrams are of finite type. (These include the Coxeter groups Haff

3 and Haff
4 of Patera and

Twarock, [5].) Perhaps unsurprisingly, however, an exhaustive search shows that the identity fails
to hold for any such diagram.
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