A NOTE ON DE CONCINI AND PROCESI’S CURIOUS IDENTITY

GRAHAM DENHAM

ABSTRACT. We give a short, case-free and combinatorial proof of de Concini and Procesi’s
formula from [1] for the volume of the simplicial cone spanned by the simple roots of any
finite root system. The argument presented here also extends their formula to include the
non-crystallographic root systems.

1. INTRODUCTION

Let ® C R" be a finite root system with base A, and let W = W(®) denote the reflection
group of ®. Let o be the positive cone spanned by the set of simple roots A:

(1) oAz{ana:caER>o forallaeA}.

acA
Let Ca be the normal cone to oa: this is usually called the fundamental chamber in the ar-
rangement A of reflecting hyperplanes of W. If 7 is a cone in R", define the volume of 7
as v(r) = vol(r N D™)/vol D™, where D™ is the unit ball centered at the origin. Finally, let
{d1,ds,...,d,} denote the degrees of W: we refer to [2] for background and notation.

Recall that the action of W on R™ by reflections is free on the complement of the hyperplanes A.
The induced action on chambers is simply transitive. Since the chambers partition the complement
of A and W acts by isometries, v(gCa) = 1/ |W|=1/[];_, d;, for any chamber gCAa.

While not so straightforward, it turns out that the volume of the cone oa is also rational, and
has a nice expression:

Theorem 1 (Theorem 1.3 in [1]). If ® is crystallographic, the volume of the cone o is

n di—l

©) voa) =2

i=1

De Concini and Procesi derive this result from the “curious identity” of their title. Their proof
of the identity is accompanied by a note by Stembridge that gives an elegant, alternate proof via
character theory.

The purpose of this note is to offer yet another argument. Using the combinatorial theory of
real hyperplane arrangements, one can prove (2) directly, in slightly more generality (§2). Then,
in the crystallographic case, de Concini and Procesi’s identity is recovered by adding up normal
cones around the fundamental alcove of the associated affine root system ® (in §3).

2. THE VOLUME FORMULA

Let V' C R™ consist of the union of the reflecting hyperplanes, together with those vectors in
the span of any proper subset of any base gA. Clearly R™ — V is a dense, open subset of R™. The
key result is the following, whose proof appears at the end of this section.
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Theorem 2. For any x € R™ —V, the number of g € W for which x € goa is independent of x
and equal to [ (d; —1).

In another formulation,

Corollary 3. For a finite root system ® and x € R™ — V', the number of choices of base A for ®
for which x is in the positive cone of A equals [];—,(d; — 1).

Proof. If A, A’ are both bases for ®, then A’ = gA for some g € W, and oa/ = goa. g

Since each cone goa has the same volume,

W[-v(oa) = ) vigoa)
geWwW

n

= [Jwi-1)

i=1
by Theorem 2, and we obtain the volume formula as a corollary:
Theorem 1. If ® is any finite root system, the volume of the cone oa is
n
d;—1
d;

v(ioa) = |

(Note that, if the rank of ® is less than n, the least degree is 1, and both sides are zero.)

2.1. Hyperplane arrangements. The terminology used below may be found in the book of
Orlik and Terao [3]. We recall a collection of hyperplanes A in R™ is central if all H € A contain
the origin, and essential if the collection of normal vectors span R™.

Recall that A has an intersection lattice L(A) of subspaces, ranked by codimension. The
Poincaré polynomial of A is defined to be

(A t) = D 0 x) (e,
XeL(A)

where p is the Mobius function. If A is essential, (A, t) is a polynomial of degree n. The following
classical theorem is a main ingredient in our proof.

Theorem 4 ([4]). If A= A(®) is an arrangement of (real) reflecting hyperplanes, then
(3) n(A,t) =[]+ (di — 1)),
i=1

where {d;} are the degrees of the reflection group.

If Hy is any hyperplane (not necessarily through the origin), let A denote the set {H N Hy : H € A},
regarded as a hyperplane arrangement in Hy. We say Hj is in general position to A if X N Hy is
nonempty for all nonzero subspaces X € L(A).

Lemma 5. If Hy is in general position to a central arrangement A in R™, then the number of
bounded chambers in A0 equals the coefficient of t™ in w(A,t).

Proof. Tt follows from the definition of general position that L(AH°) = L(A)<,_1, where the
latter is the truncation of the lattice L(A) to rank n — 1. Therefore 7(A,t) = 7w(AH0 ) 4 bt" for
some b. By a theorem of Zaslavsky [6], the number of bounded chambers of any arrangement 5
equals (—1)"*kBx(B, ~1). Substituting ¢ = —1 shows b is the number of bounded chambers in
Ao since A itself has none. O

Let € > 0 be a fixed choice of positive, real number.
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Lemma 6. For any x € Ca N (R™ = V) let H, be the hyperplane normal to x, passing through
ex. Then H, is in general position to A.

Proof. Suppose X N H, = () for some nonzero intersection of hyperplanes X. Say X = NgesHa,
where S C ®. Since X # 0, the roots S do not span R™. Since X and H, are parallel, z is a
linear combination of the roots S; then x € V, a contradiction. O

For each y € R™ with (z,y) > 0, let y+ denote the unique, positive multiple of y which lies in
H,. Note that each chamber of Af= has the form C N H, for some chamber C of A. If C N H,
is bounded, then C is just a cone over C' N H, with retraction y — y=. In particular, (z,y) >0
for all y € C. For any x € R" — V| let

(4) B, ={g €W : (z,g9z) > 0 and (gz)"* is in a bounded chamber of A=} .

Since x ¢ V, the orbit Wz has exactly one point in each chamber of A. It follows that | B,| is the
number of bounded chambers of A=,

Lemma 7. For any x € R™ —V, we have
Bmz{gEW:gflxeaA}.

Proof. A chamber C N H, of A"+ is bounded if and only if C' does not contain a ray in H,.
Equivalently, all points in C'N H,, (or, just as well, in C') have positive inner product with respect
to x.

That is, g € B, if and only if, for all y € Ca,

1

(gy,2) >0 <<= (g9 '2)>0 <= g 'zcoa,

since o is the normal cone to Ca. O

2.2. Proof of Theorem 2. Fix a point z € R™ — V. By construction, z lies in some (open)
chamber C. Without loss of generality, C = Ca. Let H, be the hyperplane normal to x, containing
ex. Using Lemmas 5, 6, and equation (3), we see the number of bounded chambers in A+ equals
H?:1(di —-1).

On the other hand, the number of bounded chambers of A+ equals |B,|; by Lemma 7, this
equals the number of g € W for which = € goa. a

(a) The cone oa and chamber Ca (b) Chambers of A#= and the orbit of

FIGURE 1. The A5 root system

Example 1. Let A = {a, 8} be the base of the Ay root system, shown in Figure 1(a). Recall
di = 2,dy = 3; then v(oa) = 2. In Figure 1(b), the chambers of A"+ are labelled 1 through 4.
As expected, two chambers (labelled 2 and 3) are bounded. For a given & € Cx, points gz in its
orbit are marked with a “o” if (z, gx) < 0. If (z, gz) > 0, the point gz is black where the chamber
(gx)H= is bounded and “e” otherwise.
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3. THE IDENTITY

Now suppose that & C R™ is an irreducible, crystallographic root system of rank n. Let ®
denote the affine root system of ®, with base A = AU {ap}. Let D denote the extended Dynkin
diagram of ®. For each simple root «; € A let ®; be the sub-root system of & with base
A; = A— {a;}. Then ® = ®(, and recall that the Dynkin diagram of ®; is obtained by deleting
the vertex corresponding to «; from D.

For each i, 0 < i < n, let (dgi), e ,dg)) denote the degrees of ®;. De Concini and Procesi
found that, for each irreducible type, an unexpected identity held:

Theorem 8 (Theorem 1.2 of [1]). For an irreducible, crystallographic root system ® of rank n,

5 ) G

=0 j

z)_l

By (re)deriving their result from Theorem 1, a geometric interpretation becomes apparent.

Proof. Let Ag denote the fundamental alcove of ®. This is a simplex bounded by the (affine)
reflecting hyperplanes {H,,: 0 < i < n}. For each i, let v; be the vertex of Ay that is opposite
the face contained in H,,. The normal cone to Ap at v; is spanned by the vectors A— {a;}, so it
is just the cone oa,;. Then

V(O.Ai) = H

by the volume formula (2). However, the normal cones to the vertices of any polytope partition
a dense open subset of R™, so their volumes sum to 1. O

(i

d —1
) ’
J

Remark 1. We have seen that the volume formula (2) also holds for finite, noncrystallographic
root systems. For the irreducible types, (2) gives

Type Ig(m) H3 H4
v(oa) || (m—1)/(2m) | 3/8 | 6061/14 400

Although the identity (5) no longer makes sense, one might still be tempted to compute the
left side formally for diagrams that extend H3 or Hy by a vertex in such a way that all proper
subdiagrams are of finite type. (These include the Coxeter groups HZT and H3f of Patera and
Twarock, [5].) Perhaps unsurprisingly, however, an exhaustive search shows that the identity fails
to hold for any such diagram.
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