Of Antipodes and Involutions, Of Cabbages and Kings

Carolina Benedetti
Fields Institute, 222 College St. Toronto, ON M5T 3J1, Canada and
Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
www.math.msu.edu/~sagan

May 21, 2015

Hopf algebras and antipodes

Sign reversing involutions

Other work and open problems

The introductory material is intended to be intuitive if not completely rigorous. All vector spaces will be over a field \mathbb{F} and all maps on them will be linear. An algebra, H, is a vector space over \mathbb{F} together with the following.
(1) An associative multiplication of elements of H. This can be viewed as a map $m: H \otimes H \rightarrow H$ by

$$
g \otimes h \mapsto g \cdot h
$$

making a certain diagram commute.
(2) A unit element. This can be viewed as a map $u: \mathbb{F} \rightarrow H$ by

$$
1_{\mathbb{F}} \mapsto 1_{H}
$$

making a certain diagram commute.
Note that since multiplication is associative we have a well-defined map $m^{k-1}: H^{\otimes k} \rightarrow H$ by

$$
h_{1} \otimes h_{2} \otimes \cdots \otimes h_{k} \mapsto h_{1} \cdot h_{2} \cdot \ldots \cdot h_{k} .
$$

Example: The shuffle algebra. Let A be a finite set called the alphabet. Consider the words over A

$$
A^{*}=\left\{w=a_{1} a_{2} \ldots a_{n}: a_{i} \in A \text { for all } i, \text { and } n \geq 0\right\} .
$$

The shuffle algebra is the set of finite formal sums

$$
\mathbb{F} A^{*}=\left\{\sum_{w} c_{w} w: c_{w} \in \mathbb{F} \text { for each } w \in A^{*} \text { in the sum }\right\} .
$$

The shuffles of $u, v \in A^{*}$ are the elements of the multiset $u \amalg v$ of all interleavings of u and v. Different interleavings are considered distinct even if they result in the same word. For example

$$
a \amalg a b=\{\{a a b, a a b, a b a\}\} \Longrightarrow a \cdot a b=2 a a b+a b a .
$$

The multiplication in $\mathbb{F} A^{*}$ is by shuffling

$$
u \cdot v=\sum_{w \in u \amalg v} w
$$

The identity element is the empty word e since, for any $v \in A^{*}$,

$$
e \amalg v=v \amalg e=\{\{v\}\} .
$$

A coalgebra, H, is a vector space over \mathbb{F} together with the following.
(1) A comultiplication of elements of H which is a map
$\Delta: H \rightarrow H \otimes H$ written as

$$
\Delta(h)=\sum h_{1} \otimes h_{2}
$$

Comultiplication is assumed to be coassociative in that

$$
(\Delta \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \Delta) \circ \Delta
$$

where id is the identity. This can be expressed using the dual of the commutative diagram for associativity of multiplication.
(2) A counit element which is a map $\epsilon: H \rightarrow \mathbb{F}$ making the dual of the diagram for a unit commute.

Note that since comultiplication is coassociative we have a well-defined $\operatorname{map} \Delta^{k-1}: H \rightarrow H^{\otimes k}$ by

$$
h \mapsto \sum h_{1} \otimes h_{2} \otimes \cdots \otimes h_{k}
$$

Example (continued). The shuffle algebra is also a coalgebra. The comultiplication is, for $w \in A^{*}$,

$$
\Delta(w)=\sum_{w_{1} w_{2}=w} w_{1} \otimes w_{2}
$$

where $w_{1} w_{2}$ is concatenation. To illustrate

$$
\Delta(a a b)=e \otimes a a b+a \otimes a b+a a \otimes b+a a b \otimes e
$$

The counit is, for $w \in A^{*}$,

$$
\epsilon(w)= \begin{cases}1 & \text { if } w=e \\ 0 & \text { else }\end{cases}
$$

The comultiplication is coassociative with

$$
\Delta^{2}(w)=\sum_{w_{1} w_{2} w_{3}=w} w_{1} \otimes w_{2} \otimes w_{3} .
$$

A bialgebra, H, is a vector space over \mathbb{F} which is both an algebra and a coalgebra such that the maps Δ and ϵ are algebra homomorphisms. Suppose H has a vector space decomposition

$$
H=\bigoplus_{n \geq 0} H_{n}
$$

If $h \in H_{n}$ then we say h is homogeneous of degree n and write $\operatorname{deg} h=n$.
Call bialgebra H graded if the direct sum satisfies the following.
(1) If $\operatorname{deg} g=m$ and $\operatorname{deg} h=n$ then

$$
\operatorname{deg}(g \cdot h)=m+n
$$

(2) If $\operatorname{deg} h=n$ and $\Delta h=\sum h_{1} \otimes h_{2}$ then, for all h_{1} and h_{2},

$$
\operatorname{deg} h_{1}+\operatorname{deg} h_{2}=n
$$

Call a graded bialgebra connected if $H_{0} \cong \mathbb{F}$.

Example (continued). Say $w=a_{1} \ldots a_{n} \in A^{*}$ has length $|w|=n$. Let

$$
A^{n}=\left\{w \in A^{*}:|w|=n\right\} .
$$

Then

$$
\mathbb{F} A^{*}=\bigoplus_{n \geq 0} \mathbb{F} A^{n}
$$

This makes $\mathbb{F} A^{*}$ graded:
(1) We have $u \cdot v=\sum_{w \in u ш v} w$ and

$$
w \in u \amalg v \Longrightarrow|w|=|u|+|v| .
$$

(2) We have $\Delta(w)=\sum_{w_{1} w_{2}=w} w_{1} \otimes w_{2}$ and

$$
w_{1} w_{2}=w \Longrightarrow\left|w_{1}\right|+\left|w_{2}\right|=|w| .
$$

We also have that $\mathbb{F} A^{*}$ is connected since

$$
\mathbb{F} A^{0}=\mathbb{F}\{e\} \cong \mathbb{F}
$$

A Hopf algebra, H, is a bialgebra together with a map $S: H \rightarrow H$ called the antipode making a certain diagram commute.
(a) Every group G gives rise to a Hopf algebra with, for all $g \in G$,

$$
S(g)=g^{-1}
$$

(b) In the Hopf algebra of symmetric functions we have

$$
S\left(s_{\lambda}\right)=(-1)^{|\lambda|} s_{\lambda^{t}},
$$

where s_{λ} is a Schur function, $|\lambda|$ is the sum of the parts of the partition λ, and λ^{t} is its transpose.
Theorem (Takeuchi)
Let H be a connected, graded bialgebra. Then H is a Hopf algebra with, for $h \in H_{n}$,

$$
S(h)=\sum_{k=1}^{n}(-1)^{k} \sum_{h_{1}, \ldots, h_{k}} h_{1} \cdot \ldots \cdot h_{k}
$$

where $h_{1} \otimes \cdots \otimes h_{k}$ is a term in $\Delta^{k-1}(h)$ and $\operatorname{deg} h_{i} \geq 1$ for all i.

$$
S(h)=\sum_{k=1}^{n}(-1)^{k} \sum_{h_{1}, \ldots, h_{k}} h_{1} \cdot \ldots \cdot h_{k}
$$

where $h_{1} \otimes \cdots \otimes h_{k}$ is a term in $\Delta^{k-1}(h)$ and $\operatorname{deg} h_{i} \geq 1$ for all i.
Example (continued). If $w=a b$ then $|w|=2$ and so by Takeuchi

$$
\begin{aligned}
S(a b) & =\sum_{k=1}^{2}(-1)^{k} \sum_{w_{1} \ldots w_{k}=w} w_{1} ш \ldots ш w_{k} \\
& =(-1)^{1}(a b)+(-1)^{2}(a \amalg b) \\
& =-a b+(a b+b a) \\
& =b a .
\end{aligned}
$$

Define the reversal of $w=a_{1} \ldots a_{n}$ to be rev $w=a_{n} \ldots a_{1}$.
Theorem
If $w \in A^{*}$ has $|w|=n$ then

$$
S(w)=(-1)^{n} \text { rev } w .
$$

Let X be a finite set which is signed in that there is a function

$$
\operatorname{sgn}: X \rightarrow\{+1,-1\} .
$$

An involution ι on X is sign reversing if, for every 2-cycle (x, y) of ι,

$$
\operatorname{sgn} y=-\operatorname{sgn} x
$$

It follows that

$$
\sum_{x \in X} \operatorname{sgn} x=\sum_{x \in \operatorname{fix} \iota} \operatorname{sgn} x
$$

where fix ι is the set of fixed points of ι. Given X, one tries to construct ι so that the second sum has fewer terms and may even be cancellation free.

Theorem
If $w \in A^{*}$ has $|w|=n$ then: $\quad S(w)=(-1)^{n}$ rev w.
Proof. By Takeuchi

$$
S(w)=\sum_{k=1}^{n}(-1)^{k} \sum w_{1} ш \ldots ш w_{k} .
$$

The inner sum is over all $w_{1} \ldots w_{k}=w$ with $\left|w_{i}\right| \geq 1$ for all i. Let $X=\left\{x=\left(w_{1} \amalg \ldots \amalg w_{k}, v\right) \mid v\right.$ is a term in $\left.w_{1} \amalg \ldots \amalg w_{k}\right\}$, $\operatorname{sgn}\left(w_{1} \amalg \ldots ш w_{k}, v\right)=(-1)^{k}$.

Thus

$$
S(w)=\sum_{x \in X}(\operatorname{sgn} x) v
$$

Example (continued). If $w=a b$ then

$$
S(a b)=(-1)^{1}(a b)+(-1)^{2}(a \sqcup b)=-a b+(a b+b a) .
$$

So

$$
X=\{(a b, a b),(a \amalg b, a b),(a \amalg b, b a)\}
$$

Write $\omega=w_{1} \amalg \ldots \amalg w_{k}$. Given (ω, v) we say w_{i} is splittable if

$$
\left|w_{i}\right| \geq 2
$$

Say $w_{i}=a b \ldots c$. In this case we can apply the splitting map

$$
\sigma(\omega, v)=\left(\omega^{\prime}, v\right)
$$

where ω^{\prime} is obtained from ω by replacing w_{i} by

$$
w_{i}^{\prime} ш w_{i+1}^{\prime}=a \amalg b \ldots c .
$$

Note that $\left(\omega^{\prime}, v\right) \in X$ since v is still a term in ω^{\prime}.
Ex. Suppose $w=a b c d e f g$ and

$$
(\omega, v)=(a \amalg b ш c d e \amalg f g, f c b d g e a) .
$$

Then $w_{3}=c d e$ is splittable and

$$
\sigma(\omega, v)=(a \amalg b \amalg c \amalg d e \amalg f g, f c b d g e a) .
$$

Given (ω, v) we say w_{i} is mergeable with w_{i+1} if

$$
\left|w_{i}\right|=1 \text { and } w_{i} \text { is to the left of } w_{i+1} \text { in } v .
$$

Say $w_{i}=a$ and $w_{i+1}=b \ldots c$. In this case we can apply the merging map

$$
\mu(\omega, v)=\left(\omega^{\prime}, v\right)
$$

where ω^{\prime} is obtained from ω by replacing $w_{i} \amalg w_{i+1}$ by

$$
w_{i}^{\prime}=a b \ldots c
$$

It follows from the second condition for mergeability that v is still a term in ω^{\prime} so $\left(\omega^{\prime}, v\right) \in X$.
Ex. Suppose $w=$ abcdefg and

$$
(\omega, v)=(a \amalg b ш c \amalg d e \amalg f g, f c b d g e a)
$$

Then $w_{3}=c$ is mergeable with $w_{4}=d e$ and

$$
\mu(\omega, v)=(a \amalg b \amalg c d e \amalg f g, f c b d g e a) .
$$

To define the involution ι, consider (ω, v) and find the smallest index i, if any, such that w_{i} is either splittable or mergeable. Let

$$
\iota(\omega, v)= \begin{cases}\sigma(\omega, v) & \text { if } w_{i} \text { is splittable } \\ \mu(\omega, v) & \text { if } w_{i} \text { is mergeable. }\end{cases}
$$

If i does not exist, then (ω, v) is a fixed point of ι. Ex. Suppose $w=a b c d e f g$ and

$$
(\omega, v)=(a \amalg b ш c d e \amalg f g, f c b d g e a) .
$$

$i \neq 1$ since a is not left of b in v. Similarly $i \neq 2$. But w_{3} splits

$$
\iota(\omega, v)=(a \amalg b \amalg c \amalg d e \amalg f g, f c b d g e a) .
$$

The minimality of i makes ι an involution. It is clearly sign reversing. And since v does not change when applying ι, the corresponding terms in Takeuchi's sum will cancel. If (ω, v) is fixed then $\left|w_{1}\right|=\cdots=\left|w_{n}\right|=1$ because no w_{i} is splittable. And since no w_{i} and w_{i+1} are mergeable, we must have

$$
v=w_{n} \ldots w_{1}=\operatorname{rev} w
$$

In addition, we have applied the split-merge method in:
(1) The Hopf algebra of polynomials.
(2) The incidence Hopf algebra of graphs (Humpert and Martin).
(3) QSym in the monomial basis.
(4) QSym in the fundamental basis.
(5) mQSym in the fundamental basis (Patrias).

Others have applied this method in:
(6) A Hopf algebra of word complexes (N. Bergeron and Ceballos).
(7) A Hopf algebra of involutions (Dahlberg).
(8) A Hopf algebra of simplicial complexes (Benedetti, Hallam and Machacek).
We have applied other involutions to derive new formulas for particular values of S in:
(9) NSym in the immaculate basis.
(10) The Malvenuto-Reutenauer Hopf algebra of permutations.

In progress:
(11) The Poirier-Reutenauer Hopf algebra of tableaux.

Open Problems

(1) Find merge/split proofs for other antipode formulas, for example in the Hopf algebra of symmetric functions using the Schur basis.
(2) Find a general theorem of the form "If H is a connected graded Hopf algebra having a basis satisfying property X then there is an explicit merge/split involution giving a cancellation-free formula for S."
(3) Generalize the cancellation-free formulas we have found for hooks and 2 -rowed compositions in the immaculate basis for NSym to other compositions. A similar question could be asked for the Malvenuto-Reutenauer and Porier-Reutenauer Hopf algebras.

THANKS FOR LISTENING!

