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• Horizontal edge:
monochromatic,
not allowed

• # vertices at level i:
multiplicity,
exponent of xi

• Edge slanting up:
ascent, power of q

• Edge slanting down:
descent, ignored

Birkhoff 1912,
Stanley 1995,
Shareshian–Wachs 2012
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The matrix-flag game

Matrix M

Flag 0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ V4 ⊂ V5 = C5

Step M · Vi
?

?
?

• Invariant under M 7→ aM + bI
• Isomorphic under M 7→ BMB−1

• Jordan blocks and eigenvalues matter
• M has k Jordan blocks
⇒ it commutes with a k-torus
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How it works: flags

Hessenberg subvariety
of Flag(C5)

Equivariant
cohomology

Action of S5

Apply ω to Frobenius
characteristic

de Mari–Procesi
–Shayman 1988,
Tymoczko 2007

Brosnan–Chow 2015:
Reciprocity,
deform variety
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For every integer partition
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√
n)

Count proper colourings
(≤ n!)

Trace of a permutation
action on (Q[t1, . . . , tn])n!

(ouf!)



Universal recipe for QSym

(Aguiar–Bergeron–Sottile 2006): If H is a
graded-connected Hopf algebra and ζ is a multiplicative
function from H to the ground ring, then there is a unique
map of graded Hopf algebras

Ψζ : H → QSym

which sends ζ to ζQ. The coefficient of Mα in Ψζ(h) is

(ζ ⊗ ζ ⊗ · · · ⊗ ζ︸ ︷︷ ︸
r copies

) ◦ (πα1 ⊗ πα2 ⊗ · · · ⊗ παr ) ◦∆r(h),

where α = (α1, α2, . . . , αr) is a list of r positive integers,
∆r is the r-fold comultiplication map of H, and πn is the
projection onto the homogeneous part of degree n.
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How much work does this save?

For every Dyck path
(≈ 4n)

For every integer partition
(≈ c

√
n)

Count proper colourings
(≤ n!)

Trace of a permutation
action on (Q[t1, . . . , tn])n!

(ouf!)

For every Dyck path
(≈ 4n)

For the partition (n)
(= 1)

Count proper 1-colourings
(≤ 1)

Dimension of the
alternating sub-rep

(hmm)
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My theorems

• There is a Hopf algebra of Dyck paths

• The q-chromatic quasisymmetric function
follows the Aguiar–Bergeron–Sottile recipe

• The Hessenberg construction follows the
Aguiar–Bergeron–Sottile recipe

• Both constructions have the same
character ζ:

ζ(path) =

{
1 path has no boxes

0 path has any boxes
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Indifference graph

All colourings

· · ·+q3
(
[ ]⊗[ ]⊗[ ]

)
+· · ·

• Horizontal edge:
monochromatic,
survives

• Vertices at level i:
in ith graph

• Edge slanting up:
ascent, power of q

• Edge slanting down:
descent, deleted

Schmitt 1994,
Athanasiadis 2015
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Open questions

• Are we any closer to proving e-positivity
(Stanley–Stembridge 1993)?

• There is a change of base ring for the
equivariant cohomology ring in the proof.
Is it geometric?

• Lots of possible choices for ζ, but very few
land in Sym rather than QSym. Are they
special?

• Personal question: does Tymoczko’s action
live on the variety itself?



Open questions

• Are we any closer to proving e-positivity
(Stanley–Stembridge 1993)?

• There is a change of base ring for the
equivariant cohomology ring in the proof.
Is it geometric?

• Lots of possible choices for ζ, but very few
land in Sym rather than QSym. Are they
special?

• Personal question: does Tymoczko’s action
live on the variety itself?

Thank you!
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