A second proof of the Shareshian–Wachs conjecture

Mathieu Guay-Paquet, LaCIM, Montréal Sat 23 Jan 2016, CAAC, London arxiv:1601.05498



































- Horizontal edge: monochromatic, not allowed
- # vertices at level *i*: multiplicity, exponent of x<sub>i</sub>
- Edge slanting up: ascent, power of q
- Edge slanting down: descent, ignored



- Horizontal edge: monochromatic, not allowed
- # vertices at level *i*: multiplicity, exponent of x<sub>i</sub>
- Edge slanting up: ascent, power of q
- Edge slanting down: descent, ignored

Birkhoff 1912, Stanley 1995, Shareshian–Wachs 2012

#### Flag $0 \subset V_1 \subset V_2 \subset V_3 \subset V_4 \subset V_5 = \mathbb{C}^5$

#### $\mathsf{Flag} \quad 0 \subset V_1 \subset V_2 \subset V_3 \subset V_4 \subset V_5 = \mathbb{C}^5$

Matrix M

## $\mathsf{Flag} \quad 0 \subset V_1 \subset V_2 \subset V_3 \subset V_4 \subset V_5 = \mathbb{C}^5$

Matrix 
$$M$$
 Step  $M \cdot V_i$ 





- Invariant under  $M \mapsto aM + bI$
- Isomorphic under  $M \mapsto BMB^{-1}$
- Jordan blocks and eigenvalues matter
- M has k Jordan blocks
  - $\Rightarrow$  it commutes with a k-torus

#### How it works: flags



#### How it works: flags



#### How it works: flags
































# Cohomology





## Cohomology







For every Dyck path 
$$(\approx 4^n)$$

For every integer partition  $(\approx c^{\sqrt{n}})$ 

For every Dyck path 
$$(\approx 4^n)$$

For every integer partition  $(\approx c^{\sqrt{n}})$ 

Count proper colourings  $(\leq n!)$ 

For every Dyck path 
$$(\approx 4^n)$$

For every integer partition  $(\approx c^{\sqrt{n}})$ 

Count proper colourings  $(\leq n!)$ 

Trace of a permutation action on  $(\mathbb{Q}[t_1, \dots, t_n])^{n!}$ (ouf!)

### Universal recipe for QSym

(Aguiar–Bergeron–Sottile 2006): If  $\mathcal{H}$  is a graded-connected Hopf algebra and  $\zeta$  is a multiplicative function from  $\mathcal{H}$  to the ground ring, then there is a unique map of graded Hopf algebras

 $\Psi_{\zeta} \colon \mathcal{H} \to \operatorname{QSym}$ 

which sends  $\zeta$  to  $\zeta_Q$ . The coefficient of  $M_{\alpha}$  in  $\Psi_{\zeta}(h)$  is

$$\underbrace{(\underline{\zeta \otimes \zeta \otimes \cdots \otimes \zeta}) \circ (\pi_{\alpha_1} \otimes \pi_{\alpha_2} \otimes \cdots \otimes \pi_{\alpha_r}) \circ \Delta_r(h),}_{r \text{ copies}}$$

where  $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_r)$  is a list of r positive integers,  $\Delta_r$  is the r-fold comultiplication map of  $\mathcal{H}$ , and  $\pi_n$  is the projection onto the homogeneous part of degree n.

For every Dyck path  $(\approx 4^n)$ 

For every integer partition  $(\approx c^{\sqrt{n}})$ 

Count proper colourings  $(\leq n!)$ 

Trace of a permutation action on  $(\mathbb{Q}[t_1, \dots, t_n])^{n!}$ (ouf!)









#### • There is a Hopf algebra of Dyck paths

- There is a Hopf algebra of Dyck paths
- The *q*-chromatic quasisymmetric function follows the Aguiar–Bergeron–Sottile recipe

- There is a Hopf algebra of Dyck paths
- The *q*-chromatic quasisymmetric function follows the Aguiar–Bergeron–Sottile recipe
- The Hessenberg construction follows the Aguiar-Bergeron-Sottile recipe

- There is a Hopf algebra of Dyck paths
- The *q*-chromatic quasisymmetric function follows the Aguiar–Bergeron–Sottile recipe
- The Hessenberg construction follows the Aguiar–Bergeron–Sottile recipe
- Both constructions have the same character  $\zeta$ :  $\zeta(\text{path}) = \begin{cases} 1 & \text{path has no boxes} \\ 0 & \text{path has any boxes} \end{cases}$











- Horizontal edge: monochromatic, survives
- Vertices at level *i*: in *i*th graph
- Edge slanting up: ascent, power of q
- Edge slanting down: descent, deleted



- Horizontal edge: monochromatic, survives
- Vertices at level *i*: in *i*th graph
- Edge slanting up: ascent, power of q
- Edge slanting down: descent, deleted

Schmitt 1994, Athanasiadis 2015






























## Open questions

- Are we any closer to proving *e*-positivity (Stanley–Stembridge 1993)?
- There is a change of base ring for the equivariant cohomology ring in the proof. Is it geometric?
- Lots of possible choices for ζ, but very few land in Sym rather than QSym. Are they special?
- Personal question: does Tymoczko's action live on the variety itself?

## Open questions

- Are we any closer to proving *e*-positivity (Stanley–Stembridge 1993)?
- There is a change of base ring for the equivariant cohomology ring in the proof. Is it geometric?
- Lots of possible choices for ζ, but very few land in Sym rather than QSym. Are they special?
- Personal question: does Tymoczko's action live on the variety itself?

## Thank you!