A second proof of the
 Shareshian-Wachs conjecture

Mathieu Guay-Paquet, LaCIM, Montréal

Sat 23 Jan 2016, CAAC, London
arxiv:1601.05498

The conjecture

The conjecture

Indifference graph

The conjecture

The conjecture

Indifference graph
Count multiplicities and ascents in all proper colourings q-chromatic quasisymmetric function

The conjecture

How it works: graphs

How it works: graphs

Indifference graph

How it works: graphs

- Horizontal edge: monochromatic, not allowed
- \# vertices at level i : multiplicity, exponent of x_{i}
- Edge slanting up: ascent, power of q
- Edge slanting down: descent, ignored

Birkhoff 1912,
Stanley 1995,
Shareshian-Wachs 2012

The matrix-flag game

Flag $\quad 0 \subset V_{1} \subset V_{2} \subset V_{3} \subset V_{4} \subset V_{5}=\mathbb{C}^{5}$

The matrix-flag game

Flag $\quad 0 \subset V_{1} \subset V_{2} \subset V_{3} \subset V_{4} \subset V_{5}=\mathbb{C}^{5}$

Matrix M

The matrix-flag game

Flag $\quad 0 \subset V_{1} \subset V_{2} \subset V_{3} \subset V_{4} \subset V_{5}=\mathbb{C}^{5}$

The matrix-flag game

Flag $\quad 0 \subset V_{1} \subset V_{2} \subset V_{3} \subset V_{4} \subset V_{5}=\mathbb{C}^{5}$

Matrix M
Step $M \cdot V_{i}$

The matrix-flag game

- Invariant under $M \mapsto a M+b I$
- Isomorphic under $M \mapsto B M B^{-1}$
- Jordan blocks and eigenvalues matter
- M has k Jordan blocks
\Rightarrow it commutes with a k-torus

How it works: flags

How it works: flags

de Mari-Procesi
-Shayman 1988,
Tymoczko 2007

Hessenberg subvariety

Apply ω to Frobenius characteristic

How it works: flags

> de Mari-Procesi
> -Shayman 1988,
> Tymoczko 2007

Brosnan-Chow 2015:
Reciprocity, deform variety

Hessenberg subvariety

Apply ω to Frobenius characteristic

Cohomology

Cohomology

Cohomology

Cohomology

Cohomology

Cohomology

How much work is this?

For every Dyck path $\left(\approx 4^{n}\right)$

How much work is this?

For every Dyck path $\left(\approx 4^{n}\right)$

For every integer partition $\left(\approx c^{\sqrt{n}}\right)$

How much work is this?

For every Dyck path $\left(\approx 4^{n}\right)$

For every integer partition $\left(\approx c^{\sqrt{n}}\right)$

Count proper colourings

$$
(\leq n!)
$$

How much work is this?

For every Dyck path $\left(\approx 4^{n}\right)$

For every integer partition $\left(\approx c^{\sqrt{n}}\right)$

Count proper colourings

$$
(\leq n!)
$$

Trace of a permutation
action on $\left(\mathbb{Q}\left[t_{1}, \ldots, t_{n}\right]\right)^{n!}$
$($ ouf! $)$

Universal recipe for QSym

(Aguiar-Bergeron-Sottile 2006): If \mathcal{H} is a graded-connected Hopf algebra and ζ is a multiplicative function from \mathcal{H} to the ground ring, then there is a unique map of graded Hopf algebras

$$
\Psi_{\zeta}: \mathcal{H} \rightarrow \mathrm{QSym}
$$

which sends ζ to ζ_{Q}. The coefficient of M_{α} in $\Psi_{\zeta}(h)$ is

$$
(\underbrace{\zeta \otimes \zeta \otimes \cdots \otimes \zeta}_{r \text { copies }}) \circ\left(\pi_{\alpha_{1}} \otimes \pi_{\alpha_{2}} \otimes \cdots \otimes \pi_{\alpha_{r}}\right) \circ \Delta_{r}(h),
$$

where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ is a list of r positive integers, Δ_{r} is the r-fold comultiplication map of \mathcal{H}, and π_{n} is the projection onto the homogeneous part of degree n.

How much work does this save?

For every Dyck path $\left(\approx 4^{n}\right)$

For every integer partition
$\left(\approx c^{\sqrt{n}}\right)$
Count proper colourings

$$
(\leq n!)
$$

Trace of a permutation
action on $\left(\mathbb{Q}\left[t_{1}, \ldots, t_{n}\right]\right)^{n!}$
(ouf!)

How much work does this save?

For every Dyck path $\left(\approx 4^{n}\right)$

For every Dyck path
$\left(\approx 4^{n}\right)$

For every integer partition

$$
\left(\approx c^{\sqrt{n}}\right)
$$

Count proper colourings

$$
(\leq n!)
$$

Trace of a permutation action on $\left(\mathbb{Q}\left[t_{1}, \ldots, t_{n}\right]\right)^{n!}$ (ouf!)

How much work does this save?

For every Dyck path $\left(\approx 4^{n}\right)$

For every integer partition $\left(\approx c^{\sqrt{n}}\right)$

For every Dyck path
$\left(\approx 4^{n}\right)$

For the partition (n)
(=1)
Count proper colourings

$$
(\leq n!)
$$

Trace of a permutation
action on $\left(\mathbb{Q}\left[t_{1}, \ldots, t_{n}\right]\right)^{n!}$ (ouf!)

How much work does this save?

For every Dyck path $\left(\approx 4^{n}\right)$

For every integer partition $\left(\approx c^{\sqrt{n}}\right)$

Count proper colourings

$$
(\leq n!)
$$

Count proper 1-colourings
(≤ 1)

Trace of a permutation
action on $\left(\mathbb{Q}\left[t_{1}, \ldots, t_{n}\right]\right)^{n!}$ (ouf!)

How much work does this save?

For every Dyck path $\left(\approx 4^{n}\right)$

For every Dyck path $\left(\approx 4^{n}\right)$

For the partition (n) (=1)

Count proper colourings

$$
(\leq n!)
$$

Count proper 1-colourings (≤ 1)

Trace of a permutation action on $\left(\mathbb{Q}\left[t_{1}, \ldots, t_{n}\right]\right)^{n!}$ (ouf!)

Dimension of the alternating sub-rep
(hmm)

My theorems

- There is a Hopf algebra of Dyck paths

My theorems

- There is a Hopf algebra of Dyck paths
- The q-chromatic quasisymmetric function follows the Aguiar-Bergeron-Sottile recipe

My theorems

- There is a Hopf algebra of Dyck paths
- The q-chromatic quasisymmetric function follows the Aguiar-Bergeron-Sottile recipe
- The Hessenberg construction follows the Aguiar-Bergeron-Sottile recipe

My theorems

- There is a Hopf algebra of Dyck paths
- The q-chromatic quasisymmetric function follows the Aguiar-Bergeron-Sottile recipe
- The Hessenberg construction follows the Aguiar-Bergeron-Sottile recipe
- Both constructions have the same character ζ :
$\zeta($ path $)= \begin{cases}1 & \text { path has no boxes } \\ 0 & \text { path has any boxes }\end{cases}$

The Hopf algebra

The Hopf algebra

Indifference graph

The Hopf algebra

The Hopf algebra

The Hopf algebra

The Hopf algebra

Decompositions

Decompositions

Orbits under $S_{2} \times S_{2}$ from the left and from the right

Decompositions

Orbits under $S_{2} \times S_{2}$ from the left and from the right

Decompositions

Orbits under $S_{2} \times S_{2}$ from the left and from the right

Decompositions

Orbits under $S_{2} \times S_{2}$ from the left and from the right

Decompositions

Orbits under $S_{2} \times S_{2}$ from the left and from the right

Decompositions

Orbits under $S_{2} \times S_{2}$ from the left and from the right

Decompositions

Orbits under $S_{2} \times S_{2}$ from the left and from the right

Decompositions

Orbits under $S_{2} \times S_{2}$ from the left and from the right

Decompositions

Orbits under $S_{2} \times S_{2}$ from the left and from the right

Decompositions

Orbits under $S_{2} \times S_{2}$ from the left and from the right

Decompositions

Orbits under $S_{2} \times S_{2}$ from the left and from the right

Decompositions

Orbits under $S_{2} \times S_{2}$ from the left and from the right

Decompositions

Orbits under $S_{2} \times S_{2}$ from the left and from the right

Open questions

- Are we any closer to proving e-positivity (Stanley-Stembridge 1993)?
- There is a change of base ring for the equivariant cohomology ring in the proof. Is it geometric?
- Lots of possible choices for ζ, but very few land in Sym rather than QSym. Are they special?
- Personal question: does Tymoczko's action live on the variety itself?

Open questions

- Are we any closer to proving e-positivity (Stanley-Stembridge 1993)?
- There is a change of base ring for the equivariant cohomology ring in the proof. Is it geometric?
- Lots of possible choices for ζ, but very few land in Sym rather than QSym. Are they special?
- Personal question: does Tymoczko's action live on the variety itself?

Thank you!

