Divisionally free arrangements of hyperplanes

Takuro Abe

(Kyoto University, Kyoto, Japan)
at
Differential and combinatorial aspects of singularities
Technische Universitat. Kaiserslautern, Kaiserslautern, Germany

2015.8.6

Setup

Setup

Set-up

$\mathcal{A} \neq \emptyset:$ a central ℓ-arrangement in $V=\mathbb{K}^{\ell}$. $H \in \mathcal{A}$.
$\mathcal{A}^{\prime}:=\mathcal{A} \backslash\{H\}, \mathcal{A}^{H}:=\{L \cap H \mid L \in \mathcal{A} \backslash\{H\}\}$.
$\Rightarrow\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{H}\right)$: the triple.

Setup

Set-up

$\mathcal{A} \neq \emptyset:$ a central ℓ-arrangement in $V=\mathbb{K}^{\ell}$. $H \in \mathcal{A}$.
$\mathcal{A}^{\prime}:=\mathcal{A} \backslash\{H\}, \mathcal{A}^{H}:=\{L \cap H \mid L \in \mathcal{A} \backslash\{H\}\}$.
$\Rightarrow\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{H}\right)$: the triple.
$L(\mathcal{A}):=\left\{\cap_{H \in \mathcal{B}} H \mid \mathcal{B} \subset \mathcal{A}\right\}$: intersection poset. $L_{i}(\mathcal{A}):=\{X \in L(\mathcal{A}) \mid \operatorname{codim} X=i\}$.

Localization and restriction

Localization and restriction

Two fundamental operations
For $X \in L(\mathcal{A})$, let

$$
\begin{array}{ll}
\mathcal{A}_{X}:=\{H \in \mathcal{A} \mid X \subset H\} & \text { (localization), } \\
\mathcal{A}^{X}:=\left\{H \cap X \mid H \in \mathcal{A} \backslash \mathcal{A}_{X}\right\} & \text { (restriction). }
\end{array}
$$

Localization and restriction

Two fundamental operations
For $X \in L(\mathcal{A})$, let

$$
\begin{array}{ll}
\mathcal{A}_{X}:=\{H \in \mathcal{A} \mid X \subset H\} & \text { (localization), } \\
\mathcal{A}^{X}:=\left\{H \cap X \mid H \in \mathcal{A} \backslash \mathcal{A}_{X}\right\} & \text { (restriction). }
\end{array}
$$

Flags
A flag $F=\left\{X_{i} i_{i=0}^{\ell-1}\right.$ of \mathcal{A} is a sequence

$$
V=X_{0} \supset X_{1} \supset \cdots \supset X_{\ell-1}
$$

such that $X_{i} \in L_{i}(\mathcal{A})(i=0, \ldots, \ell-1)$.

Check definitions by an example!

Check definitions by an example!

Example

\mathcal{A} : arrangement in \mathbb{R}^{4} defined by
$\prod_{i=1}^{4} x_{i} \prod_{a_{2}, a_{3}, a_{4} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right)=0$.

Check definitions by an example!

Example

\mathcal{A} : arrangement in \mathbb{R}^{4} defined by
$\prod_{i=1}^{4} x_{i} \prod_{a_{2}, a_{3}, a_{4} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right)=0$.
Then $|\mathcal{A}|=12$, and a flag is defined, e,g., by

$$
\begin{aligned}
X_{1}=\left\{x_{4}=0\right\} & \supset X_{2}=\left\{x_{3}=x_{4}=0\right\} \\
& \supset X_{3}=\left\{x_{2}=x_{3}=x_{4}=0\right\} .
\end{aligned}
$$

Check definition by an example!

Check definition by an example!

Example

\mathcal{A} : the same arrangement
$\prod_{i=1}^{4} x_{i} \prod_{a_{2}, a_{3}, a_{4} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right)=0$.

Check definition by an example!

Example

\mathcal{A} : the same arrangement
$\prod_{i=1}^{4} x_{i} \prod_{a_{2}, a_{3}, a_{4} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right)=0$.
Then the restrictions are
$\mathcal{A}^{X_{1}}: \prod_{i=1}^{3} x_{i} \prod_{a_{2}, a_{3} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}\right)=0$,
$\mathcal{A}^{X_{2}}: x_{1} x_{2}\left(x_{1}^{2}-x_{2}^{2}\right)=0$.

Remark on flags

Remark on flags

Remark
$\left\{X_{i}\right\}$: flag of \mathcal{A}. Then

Remark on flags

Remark
$\left\{X_{i}\right\}$: flag of \mathcal{A}. Then
(1) $X_{0}=V$, so $\mathcal{A}^{X_{0}}=\mathcal{A}$.

Remark on flags

Remark

$\left\{X_{i}\right\}$: flag of \mathcal{A}. Then
(1) $X_{0}=V$, so $\mathcal{A}^{X_{0}}=\mathcal{A}$.
(2) $X_{\ell-1}$ is a line, so $\mathcal{A}^{X_{\ell-1}}$ is a point on the line $X_{\ell-1}$. Hence $\left|\mathcal{A}^{X_{\ell-1}}\right|=1$.

Remark on flags

Remark

$\left\{X_{i}\right\}$: flag of \mathcal{A}. Then
(1) $X_{0}=V$, so $\mathcal{A}^{X_{0}}=\mathcal{A}$.
(2) $X_{\ell-1}$ is a line, so $\mathcal{A}^{X_{\ell-1}}$ is a point on the line $X_{\ell-1}$. Hence $\left|\mathcal{A}^{X_{\ell-1}}\right|=1$.
(3) Also, we assume that $X_{\ell}=\{0\}$ (essential arrangement). Hence $\mathcal{A}^{X_{\ell}}=\emptyset$, and $\left|\mathcal{A}^{X_{\ell}}\right|=0$.

Poincarè polynomials

Poincarè polynomials

Poincarè polynomials

$\pi(\mathcal{F} ; t):=\sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\operatorname{codim} X}$.

Poincarè polynomials

Poincarè polynomials

$\pi(\mathcal{A} ; t):=\sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\operatorname{codim} X}$. If $\mathbb{K}=\mathbb{C}$, then

$$
\pi(\mathcal{A} ; t)=\operatorname{Poin}\left(\mathbb{C}^{\ell} \backslash \cup_{H \in \mathcal{A}} H ; t\right)
$$

Poincarè polynomials

Poincarè polynomials

$\pi(\mathcal{A} ; t):=\sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\operatorname{codim} X}$. If $\mathbb{K}=\mathbb{C}$, then

$$
\pi(\mathcal{A} ; t)=\operatorname{Poin}\left(\mathbb{C}^{\ell} \backslash \cup_{H \in \mathcal{A}} H ; t\right)
$$

It is known that $\pi(\mathcal{F} ; t)$ is combinatorial (i.e., determined by $L(\mathcal{A})$). Hence so are all Betti numbers of the complemeht $M(\mathcal{A}):=\mathbb{C}^{\ell} \backslash \cup_{H \in \mathcal{A}} H$.

Definition of freeness

Recall the freeness in general.

Definition of freeness

Recall the freeness in general.

Free arrangements
Let $S=\mathbb{K}\left[x_{1}, \ldots, x_{\ell}\right]$. Then
$D(\mathcal{A}):=\left\{\theta \in \operatorname{Der} S \mid \theta\left(\alpha_{H}\right) \in S \alpha_{H}(\forall H \in \mathcal{A})\right\}$.

Definition of freeness

Recall the freeness in general.
Free arrangements
Let $S=\mathbb{K}\left[x_{1}, \ldots, x_{\ell}\right]$. Then
$D(\mathcal{A}):=\left\{\theta \in \operatorname{Der} S \mid \theta\left(\alpha_{H}\right) \in S \alpha_{H}(\forall H \in \mathcal{A})\right\}$.

We say \mathcal{A} is free with $\exp (\mathcal{A})=\left(d_{1}, d_{2}, \ldots, d_{\ell}\right)$ if

$$
D(\mathcal{A})=S \theta_{1} \oplus S \theta_{2} \oplus \cdots \oplus S \theta_{\ell-1}
$$

with $\operatorname{deg} \theta_{i}=d_{i} \quad(i=1, \ldots, \ell)$.

Problems on freeness

Problems on freeness

Problems

(1) Are there any relation between freeness (algebraic structure) of \mathcal{A}, and $L(\mathcal{A})$ (combinatorial structure) of \mathcal{A} ?
(2) How to determine freeness of an arrangement?

An answer to Problem1

An answer to Problem1

Factorization Theorem (Terao, 1981)
If \mathcal{A} is free with $\exp (\mathcal{A})=\left(d_{1}, \ldots, d_{\ell}\right)$, then $\pi(\mathcal{A} ; t)=\prod_{i=1}^{\ell}\left(1+d_{i} t\right)$.

An answer to Problem1

Factorization Theorem (Terao, 1981)
If \mathcal{A} is free with $\exp (\mathcal{A})=\left(d_{1}, \ldots, d_{\ell}\right)$, then $\pi(\mathcal{A} ; t)=\prod_{i=1}^{\ell}\left(1+d_{i} t\right)$. In particular, \mathcal{A} is not free if $\pi(\mathcal{A} ; t)$ is irreducible over \mathbb{Z}.

An answer to Problem1

Factorization Theorem (Terao, 1981) If \mathcal{A} is free with $\exp (\mathcal{A})=\left(d_{1}, \ldots, d_{\ell}\right)$, then $\pi(\mathcal{A} ; t)=\prod_{i=1}^{\ell}\left(1+d_{i} t\right)$. In particular, \mathcal{A} is not free if $\pi(\mathcal{A} ; t)$ is irreducible over \mathbb{Z}.

This is an implication from freeness to combinatorics, and the most important relation between algebra and combinatorics!

An answer to Problem 2

An answer to Problem 2

Addition-Deletion Theorem (Terao, 1980)

For the triple $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{H}\right)$, any two of the following three imply the third:
(1) \mathcal{A} is free with $\exp (\mathcal{A})=\left(d_{1}, \ldots, d_{\ell-1}, d_{\ell}\right)$.
(2) \mathcal{F}^{\prime} is free with $\exp \left(\mathcal{A}^{\prime}\right)=\left(d_{1}, \ldots, d_{\ell-1}, d_{\ell}-1\right)$.
(3) \mathcal{A}^{H} is free with $\exp \left(\mathcal{A}^{H}\right)=\left(d_{1}, \ldots, d_{\ell-1}\right)$.

An answer to Problem 2

Addition-Deletion Theorem (Terao, 1980)

For the triple $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{H}\right)$, any two of the following three imply the third:
(1) \mathcal{A} is free with $\exp (\mathcal{A})=\left(d_{1}, \ldots, d_{\ell-1}, d_{\ell}\right)$.
(2) \mathcal{F}^{\prime} is free with $\exp \left(\mathcal{F}^{\prime}\right)=\left(d_{1}, \ldots, d_{\ell-1}, d_{\ell}-1\right)$.
(3) \mathcal{A}^{H} is free with $\exp \left(\mathcal{A}^{H}\right)=\left(d_{1}, \ldots, d_{\ell-1}\right)$.

By Terao's factorization, all the π 's above factorize.

Addition theorem

Addition theorem

Combining two theorems, we may formulate:

Theorem (Terao, 1980)
\mathcal{A} is free if $\exists H \in \mathcal{A}$ s.t. $\mathcal{A} \backslash\{H\}$ and \mathcal{A}^{H} are free, and $\pi\left(\mathcal{A}^{H} ; t\right)$ divides $\pi(\mathcal{A} ; t)$.

Addition theorem

Combining two theorems, we may formulate:
Theorem (Terao, 1980)
\mathcal{A} is free if $\exists H \in \mathcal{A}$ s.t. $\mathcal{A} \backslash\{H\}$ and \mathcal{A}^{H} are free, and $\pi\left(\mathcal{A}^{H} ; t\right)$ divides $\pi(\mathcal{A} ; t)$.

This is the most useful way to determine freeness. The first main theorem in this talk is the following development of the above.

Division theorem on freeness

Division theorem on freeness

Division Theorem (A-)
Assume that for some $H \in \mathcal{A}$,

Division theorem on freeness

Division Theorem (A-)
Assume that for some $H \in \mathcal{A}$, (1) \mathcal{A}^{H} is free,

Division theorem on freeness

Division Theorem (A-)
Assume that for some $H \in \mathcal{A}$,
(1) \mathcal{A}^{H} is free, and
(2) $\pi\left(\mathcal{A}^{H} ; t\right) \mid \pi(\mathcal{A} ; t)$.

Division theorem on freeness

Division Theorem (A-)
Assume that for some $H \in \mathcal{A}$,
(1) \mathcal{A}^{H} is free, and
(2) $\pi\left(\mathcal{F}^{H} ; t\right) \mid \pi(\mathcal{A} ; t)$.

Then \mathcal{A} is free.

Division theorem on freeness

Division Theorem (A-)
Assume that for some $H \in \mathcal{A}$,
(1) \mathcal{A}^{H} is free, and
(2) $\pi\left(\mathcal{F}^{H} ; t\right) \mid \pi(\mathcal{A} ; t)$.

Then \mathcal{A} is free.
Compare the addition theorem
Assume that for some $H \in \mathcal{A}$,
(1) \mathcal{A}^{H} is free, (2) $\pi\left(\mathcal{A}^{H} ; t\right) \mid \pi(\mathcal{A} ; t)$, and (3) $\mathcal{A} \backslash\{H\}$ is free.
Then \mathcal{A} is free.

Example

Example

Example : Type B

\mathcal{B}_{ℓ} is defined by $\prod_{i=1}^{\ell} x_{i} \prod_{1 \leq i<j \leq \ell}\left(x_{i}^{2}-x_{j}^{2}\right)=0$. \mathcal{B}_{2} is free with $\pi\left(\mathcal{B}_{2} ; t\right)=(1+t)(1+3 t)$, and $\pi\left(\mathcal{B}_{\ell} ; t\right)=\prod_{i=1}^{\ell}(1+(2 i-1) t)$. Hence division theorem immediately shows that \mathcal{B}_{ℓ} are all free.

Example

Example : Type B

\mathcal{B}_{ℓ} is defined by $\prod_{i=1}^{\ell} x_{i} \prod_{1 \leq i<j \leq \ell}\left(x_{i}^{2}-x_{j}^{2}\right)=0$. \mathcal{B}_{2} is free with $\pi\left(\mathcal{B}_{2} ; t\right)=(1+t)(1+3 t)$, and $\pi\left(\mathcal{B}_{\ell} ; t\right)=\prod_{i=1}^{\ell}(1+(2 i-1) t)$. Hence division theorem immediately shows that \mathcal{B}_{ℓ} are all free.

Note that all what we did above are combinatorial, and there are no algebraic arugument, though we are determining freeness!

Combinatorics and division theorem

Key of type $\mathrm{B}: B_{2}$ is free! This comes from;

Combinatorics and division theorem

Key of type $\mathrm{B}: B_{2}$ is free! This comes from;
Grothendieck's Theorem
All arrangement in \mathbb{K}^{2} are free, since it coincides with a finite set of lines in $\mathbf{P}_{\mathbb{K}}^{1}$. Hence every torsion free sheaf on it splits into a direct sum of line bundles.

Combinatorics and division theorem

Key of type $\mathrm{B}: B_{2}$ is free! This comes from;
Grothendieck's Theorem
All arrangement in \mathbb{K}^{2} are free, since it coincides with a finite set of lines in $\mathbf{P}_{\mathbb{K}}^{1}$. Hence every torsion free sheaf on it splits into a direct sum of line bundles.

Hence applying the division theorem repeatedly, we can obtain a completely combinatorial way to check the freeness!

Divisional flag

Divisional flag

Theorem (A-)

Divisional flag

Theorem (A-)
Assume that \mathcal{A} has a flag (divisional flag)

$$
V=X_{0} \supset X_{1} \supset \cdots \supset X_{\ell-1}
$$

with $X_{i} \in L_{i}(\mathcal{A})$ such that $\pi\left(\mathcal{A}^{X_{i+1}} ; t\right) \mid \pi\left(\mathcal{A}^{X_{i}} ; t\right)$ for $i=0 \ldots, \ell-2$. Then \mathcal{A} is free.

Divisional flag

Theorem (A-)
Assume that \mathcal{A} has a flag (divisional flag)

$$
V=X_{0} \supset X_{1} \supset \cdots \supset X_{\ell-1}
$$

with $X_{i} \in L_{i}(\mathcal{A})$ such that $\pi\left(\mathcal{A}^{X_{i+1}} ; t\right) \mid \pi\left(\mathcal{A}^{X_{i}} ; t\right)$ for $i=0 \ldots, \ell-2$. Then \mathcal{A} is free. (Completely combinatorial!)

Example

Example

Example

$\mathcal{A}:$ an arrangement in \mathbb{R}^{4} defined by
$\prod_{i=1}^{4} x_{i} \prod_{a_{2}, a_{3}, a_{4} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right)=0$.

Example

Example

\mathcal{A} : an arrangement in \mathbb{R}^{4} defined by
$\prod_{i=1}^{4} x_{i} \prod_{a_{2}, a_{3}, a_{4} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right)=0$.

$$
\pi(\mathcal{A} ; t)=(t-1)(t-3)(t-3)(t-5),
$$

Example

Example

\mathcal{A} : an arrangement in \mathbb{R}^{4} defined by
$\prod_{i=1}^{4} x_{i} \prod_{a_{2}, a_{3}, a_{4} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right)=0$.

$$
\begin{aligned}
\pi(\mathcal{A} ; t) & =(t-1)(t-3)(t-3)(t-5), \\
\pi\left(\mathcal{A}^{x_{4}=0} ; t\right) & =(t-1)(t-3)(t-3),
\end{aligned}
$$

Example

Example

\mathcal{A} : an arrangement in \mathbb{R}^{4} defined by
$\prod_{i=1}^{4} x_{i} \prod_{a_{2}, a_{3}, a_{4} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right)=0$.

$$
\begin{aligned}
\pi(\mathcal{A} ; t) & =(t-1)(t-3)(t-3)(t-5), \\
\pi\left(\mathcal{A}^{x_{4}=0} ; t\right) & =(t-1)(t-3)(t-3), \\
\pi\left(\mathcal{A}^{x_{3}=x_{4}=0} ; t\right) & =(t-1)(t-3) .
\end{aligned}
$$

Example

Example

\mathcal{A} : an arrangement in \mathbb{R}^{4} defined by
$\prod_{i=1}^{4} x_{i} \prod_{a_{2}, a_{3}, a_{4} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right)=0$.

$$
\begin{aligned}
\pi(\mathcal{A} ; t) & =(t-1)(t-3)(t-3)(t-5), \\
\pi\left(\mathcal{A}^{x_{4}=0} ; t\right) & =(t-1)(t-3)(t-3), \\
\pi\left(\mathcal{A}^{x_{3}=x_{4}=0} ; t\right) & =(t-1)(t-3) .
\end{aligned}
$$

Hence \mathcal{A} is free with divisional flag
$\mathbb{R}^{4} \supset\left\{x_{4}=0\right\} \supset\left\{x_{3}=x_{4}=0\right\}$.

Divisionally free arrangements

Divisionally free arrangements

As in the previous example, whether \mathcal{A} has a divisional flag or not depends only on $L(\mathcal{A})$, its combinatorics!

Divisionally free arrangements

As in the previous example, whether \mathcal{A} has a divisional flag or not depends only on $L(\mathcal{A})$, its combinatorics!

Terao's Conjecture

The freeness of \mathcal{A} depends only on $L(\mathcal{A})$, its combinatorics.

Divisionally free arrangements

As in the previous example, whether \mathcal{A} has a divisional flag or not depends only on $L(\mathcal{A})$, its combinatorics!

Terao's Conjecture

The freeness of \mathcal{A} depends only on $L(\mathcal{A})$, its combinatorics.

Division theorem and divisional flag work well when we prove Terao's conjecture for several arrangements!

Divisionally free arrangements

Divisionally free arrangements

Let us define a new class of free arrangements in which Terao's conjecture holds by using divisional flag!

Divisionally free arrangements

Let us define a new class of free arrangements in which Terao's conjecture holds by using divisional flag!
Divisionally free arrangements
\mathcal{A} is divisionally free if \mathcal{A} has a divisional flag.

Divisionally free arrangements

Let us define a new class of free arrangements in which Terao's conjecture holds by using divisional flag!
Divisionally free arrangements
\mathcal{A} is divisionally free if \mathcal{A} has a divisional flag. Let $\mathcal{D F}_{\ell}$ be the set of all divisionally free arrangements in \mathbb{K}^{ℓ}, and

Divisionally free arrangements

Let us define a new class of free arrangements in which Terao's conjecture holds by using divisional flag!
Divisionally free arrangements
\mathcal{A} is divisionally free if \mathcal{A} has a divisional flag. Let $\mathcal{D F}_{\ell}$ be the set of all divisionally free arrangements in \mathbb{K}^{ℓ}, and

$$
\mathcal{D F}:=\cup_{\ell \geq 1} \mathcal{D F} \mathcal{F}_{\ell} .
$$

Properties of $\mathcal{D F}$; Answer to Problem 2

Properties of $\mathcal{D F}$; Answer to Problem 2

Theorem
(1) \mathcal{A} is free if $\mathcal{A} \in \mathcal{D F}$.

Properties of $\mathcal{D F}$; Answer to Problem 2

Theorem
(1) \mathcal{A} is free if $\mathcal{A} \in \mathcal{D F}$.
(2) Whether $\mathcal{A} \in \mathcal{D F}$ or not depends only on $L(\mathcal{A})$.

Properties of $\mathcal{D F}$; Answer to Problem 2

Theorem

(1) \mathcal{A} is free if $\mathcal{A} \in \mathcal{D F}$.
(2) Whether $\mathcal{A} \in \mathcal{D F}$ or not depends only on $L(\mathcal{A})$.

Remark

Not all free arrangements are divisionally free! (e.g., the cone of all the edges and diagonals of a regular pentagon.)

Inductively free arrangements $I \mathcal{F}$!

There is a famous classical class similar to $\mathcal{D F}$:

Inductively free arrangements $I \mathcal{F}$:

There is a famous classical class similar to $\mathcal{D F}$:
Inductively free arrangements (Terao, 1980)
Define a class of arrangements $I \mathcal{F}_{\ell}$ in \mathbb{K}^{ℓ} as the smallest class of arrangements such that,

Inductively free arrangements $I \mathcal{F}$:

There is a famous classical class similar to $\mathcal{D F}$:
Inductively free arrangements (Terao, 1980)
Define a class of arrangements $I \mathcal{F}_{\ell}$ in \mathbb{K}^{ℓ} as the smallest class of arrangements such that, $I \mathcal{F}_{1}$ and $I \mathcal{F}_{2}$ consist of all arrangements of each dimension, and

Inductively free arrangements $\mathcal{I F}$!

There is a famous classical class similar to $\mathcal{D F}$:
Inductively free arrangements (Terao, 1980)
Define a class of arrangements $I \mathcal{F}_{\ell}$ in \mathbb{K}^{ℓ} as the smallest class of arrangements such that, $I \mathcal{F}_{1}$ and $I \mathcal{F}_{2}$ consist of all arrangements of each dimension, and $\mathcal{A} \in \mathcal{I} \mathcal{F}_{\ell}$ if $\exists H \in \mathcal{A}$ such that $\mathcal{A}^{\prime}:=\mathcal{A} \backslash\{H\} \in \mathcal{F}_{\ell}, \mathcal{A}^{H} \in \mathcal{I F}{ }_{\ell-1}$, and $\pi\left(\mathcal{A}^{H} ; t\right) \mid \pi\left(\mathcal{A}^{\prime} ; t\right)$.

Inductively free arrangements $I \mathcal{F}$!

There is a famous classical class similar to $\mathcal{D F}$:
Inductively free arrangements (Terao, 1980)
Define a class of arrangements $I \mathcal{F}_{\ell}$ in \mathbb{K}^{ℓ} as the smallest class of arrangements such that, $I \mathcal{F}_{1}$ and $I \mathcal{F}_{2}$ consist of all arrangements of each dimension, and $\mathcal{A} \in \mathcal{I} \mathcal{F}_{\ell}$ if $\exists H \in \mathcal{A}$ such that $\mathcal{A}^{\prime}:=\mathcal{A} \backslash\{H\} \in \mathcal{F}_{\ell}, \mathcal{A}^{H} \in \mathcal{I F}{ }_{\ell-1}$, and $\pi\left(\mathcal{A}^{H} ; t\right) \mid \pi\left(\mathcal{A}^{\prime} ; t\right)$.
$\mathcal{A} \in \mathcal{I F}$ depends only on combinatorics.

$\mathcal{I F}$ and $\mathcal{D F}$

IF has been the only systematic way to check the combinatorial freeness.

$\mathcal{I F}$ and $\mathcal{D F}$

IF has been the only systematic way to check the combinatorial freeness.
Theorem
$\mathcal{I F} \subsetneq \mathcal{D F}$.

$\mathcal{I F}$ and $\mathcal{D F}$

If has been the only systematic way to check the combinatorial freeness.
Theorem
$\mathcal{I F} \subsetneq \mathcal{D F}$.
The inclusion is clear. The non-equality is difficult.

$I \mathcal{F}$ and $\mathcal{D F}$

IF has been the only systematic way to check the combinatorial freeness.
Theorem
$\mathcal{I F} \subsetneq \mathcal{D F}$.
The inclusion is clear. The non-equality is difficult.
In fact, the arrangement $\mathcal{A}\left(G_{31}\right)$ of the unitary reflection group G_{31} satisfies $\mathcal{A}\left(G_{31}\right) \in \mathcal{D \mathcal { F }} \backslash I \mathcal{F}$ due to the result by Röhrle and Hoge.

The second Betti number and $\mathcal{D F}$

$\mathcal{D F}$ is easier to determine than $I \mathcal{F}$,

The second Betti number and $\mathcal{D F}$

$\mathcal{D F}$ is easier to determine than $\mathcal{I F}$, but still to compute $\pi(\mathcal{A} ; t)$ is hard!

The second Betti number and $\mathcal{D F}$

$\mathcal{D F}$ is easier to determine than $\mathcal{I F}$, but still to compute $\pi(\mathcal{A} ; t)$ is hard!

In fact, the second Betti number is sufficient!

The second Betti number and $\mathcal{D F}$

$\mathcal{D F}$ is easier to determine than $\mathcal{I F}$, but still to compute $\pi(\mathcal{A} ; t)$ is hard!

In fact, the second Betti number is sufficient!
The second Betti number
Let $b_{2}(\mathcal{F})$ denote the second Betti number of
$M(\mathcal{A}):=\mathbb{C}^{\ell} \backslash \cup_{H \in \mathcal{A}} H$ when $\mathbb{K}=\mathbb{C}$. In fact,

$$
b_{2}(\mathcal{A})=\sum_{X \in L_{2}(\mathcal{H})}\left(\left|\mathcal{A}_{X}\right|-1\right)
$$

over an arbitrary field \mathbb{K} by Orlik-Solomon.

b_{2}-type divisional freeness

b_{2}-type divisional freeness

Theorem (A-)

The following are equivalent:
(1) $\mathcal{A} \in \mathcal{D F}$.

b_{2}-type divisional freeness

Theorem (A-)

The following are equivalent:
(1) $\mathcal{A} \in \mathfrak{D F}$.
(2) $\exists\left\{X_{i}\right\}$ a flag s.t.

$$
\pi(\mathcal{A} ; t)=\prod_{i=0}^{\ell-1}\left(1+\left(\left|\mathcal{A}^{X_{i}}\right|-\left|\mathcal{A}^{X_{i+1}}\right|\right) t\right)
$$

b_{2}-type divisional freeness

Theorem (A-)

The following are equivalent:
(1) $\mathcal{A} \in \mathcal{D F}$.
(2) $\exists\left\{X_{i}\right\}$ a flag s.t.

$$
\pi(\mathcal{A} ; t)=\prod_{i=0}^{\ell-1}\left(1+\left(\left|\mathcal{A}^{X_{i}}\right|-\left|\mathcal{A}^{X_{i+1}}\right|\right) t\right) .
$$

(3) $\exists\left\{X_{i}\right\}$ a flag s.t.

$$
b_{2}(\mathcal{A})=\sum_{i=0}^{\ell-2}\left(\left|\mathcal{A}^{X_{i}}\right|-\left|\mathcal{A}^{X_{i+1}}\right|\right)\left|\mathcal{A}^{X_{i+1}}\right| .
$$

$\left(b_{1}, b_{2}\right)$-inequality

$\left(b_{1}, b_{2}\right)$-inequality

In particular, we can show that

$\left(b_{1}, b_{2}\right)$-inequality

$$
\begin{aligned}
b_{2}(\mathcal{A}) & \geq \sum_{i=0}^{\ell-2}\left(\left|\mathcal{A}^{X_{i}}\right|-\left|\mathcal{A}^{X_{i+1}}\right|\right)\left|\mathcal{A}^{X_{i+1}}\right| \\
& =\sum_{i=0}^{\ell-2}\left(b_{1}\left(\mathcal{A}^{X_{i}}\right)-b_{1}\left(\mathcal{A}^{X_{i+1}}\right)\right) b_{1}\left(\mathcal{A}^{X_{i+1}}\right)
\end{aligned}
$$

for any flag $\left\{X_{i}\right\}$, and the equality holds if and only if $\mathcal{A} \in \mathcal{D F}$.

Example again 1

Example again 1

Example
 \mathcal{A} :
 $\prod_{i=1}^{4} x_{i} \prod_{a_{2}, a_{3}, a_{4} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right)=0$.

Example again 1

Example

\mathcal{A} :
$\prod_{i=1}^{4} x_{i} \prod_{a_{2}, a_{3}, a_{4} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right)=0$. Take a flag defined by

$$
\begin{aligned}
X_{1}=\left\{x_{4}=0\right\} & \supset X_{2}=\left\{x_{3}=x_{4}=0\right\} \\
& \supset X_{3}=\left\{x_{2}=x_{3}=x_{4}=0\right\} .
\end{aligned}
$$

Example again 2

Compute b_{2} and b_{1} 's!
Then

$$
\begin{aligned}
b_{2}(\mathcal{A}) & =50,|\mathcal{A}|=12, \\
\left|\mathcal{A}^{X_{1}}\right| & =7,\left|\mathcal{A}^{X_{2}}\right|=4,\left|\mathcal{A}^{X_{3}}\right|=1 .
\end{aligned}
$$

Example again 2

Compute b_{2} and b_{1} 's!
Then

$$
\begin{aligned}
b_{2}(\mathcal{A}) & =50,|\mathcal{A}|=12, \\
\left|\mathcal{A}^{X_{1}}\right| & =7,\left|\mathcal{A}^{X_{2}}\right|=4,\left|\mathcal{A}^{X_{3}}\right|=1 .
\end{aligned}
$$

Hence

$$
50=(12-7) 7+(7-4) 4+(4-1) 1
$$

confirms that $\mathcal{A} \in \mathcal{D F}$.

More applications

More applications

Applications of divisions
(1) Combinatoriality of most of recursively free arrangements.
(2) Combinatorial freeness of Coxeter and unitary reclection arrangements and its relatives.

Outline of the proof of division theorem

Outline of the proof of division theorem

The proof depends on algebraic geometry (Horrocks' splitting criterion) and multiarrangement theory.

Outline of the proof of division theorem

The proof depends on algebraic geometry (Horrocks' splitting criterion) and multiarrangement theory.
Outline of proof
Let $T_{\mathcal{A}}:=\widetilde{D_{0}(\mathcal{A})}$ and take $H \in \mathcal{A}$. Then \mathcal{A} is free iff $T_{\mathcal{A}}$ splits iff $\left.T_{\mathcal{A}}\right|_{H}$ splits by Horrocks. Hence for the division, we need to approximate $T_{\mathcal{A l}}{ }_{H}$ in terms of \mathcal{A}^{H} !

Outline of the proof

Outline of the proof

How to approximate $T_{\mathcal{A} \mid H}$ in terms of \mathcal{A}^{H} ?
We use multiarrangement, or non-reduced restriction of \mathcal{A} onto H !

Outline of the proof

How to approximate $\left.T_{\mathcal{A}}\right|_{H}$ in terms of \mathcal{A}^{H} ?
We use multiarrangement, or non-reduced restriction of \mathcal{A} onto H !

Remark

For b_{2}-version, we use Poincarè polynomial of multiarrangement by Terao, Wakefield and myself. That is close to Chern polynomial of $T_{\left.\mathcal{A}\right|_{H}}$ by Schulze, A-Yoshinaga and
Denham-Schulze. i.p., $b_{2}(\mathcal{A})=c_{2}\left(T_{\mathcal{A}}\right)$ by
Denham-Schulze.

Converse of division : Sandwich Theorem

Converse of division : Sandwich Theorem

Division asserts that freeness of \mathcal{A}^{H} implies that of \mathcal{A}. How about the converse?

Converse of division : Sandwich Theorem

Division asserts that freeness of \mathcal{A}^{H} implies that of \mathcal{A}. How about the converse?
Sandwich Theorem (A-)
Let $H \neq L \in \mathcal{A}, X:=H \cap L \in L_{2}(\mathcal{A})$.

Converse of division : Sandwich Theorem

Division asserts that freeness of \mathcal{A}^{H} implies that of \mathcal{A}. How about the converse?
Sandwich Theorem (A-)
Let $H \neq L \in \mathcal{A}, X:=H \cap L \in L_{2}(\mathcal{A})$.Assume that \mathcal{A} and \mathcal{A}^{X} are free with $\exp (\mathcal{A})=\left(d_{1}, \ldots, d_{\ell}\right), \exp \left(\mathcal{A}^{X}\right)=\left(d_{1}, \ldots, d_{\ell-2}\right)$.

Converse of division : Sandwich Theorem

Division asserts that freeness of \mathcal{A}^{H} implies that of \mathcal{A}. How about the converse?
Sandwich Theorem (A-)
Let $H \neq L \in \mathcal{A}, X:=H \cap L \in L_{2}(\mathcal{A})$.Assume that \mathcal{A} and \mathcal{A}^{X} are free with $\exp (\mathcal{A})=\left(d_{1}, \ldots, d_{\ell}\right), \exp \left(\mathcal{A}^{X}\right)=\left(d_{1}, \ldots, d_{\ell-2}\right)$. Then \mathcal{A}^{H} is free with $\exp \left(\mathcal{F}^{H}\right)=\left(d_{1}, \ldots, d_{\ell-1}\right)$ if $|\mathcal{A}|-\left|\mathcal{F}^{H}\right|=d_{\ell}$.

Converse of division : Sandwich Theorem

Division asserts that freeness of \mathcal{A}^{H} implies that of \mathcal{A}. How about the converse?
Sandwich Theorem (A-)
Let $H \neq L \in \mathcal{A}, X:=H \cap L \in L_{2}(\mathcal{A})$.Assume that \mathcal{A} and \mathcal{A}^{X} are free with $\exp (\mathcal{A})=\left(d_{1}, \ldots, d_{\ell}\right), \exp \left(\mathcal{A}^{X}\right)=\left(d_{1}, \ldots, d_{\ell-2}\right)$. Then \mathcal{F}^{H} is free with $\exp \left(\mathcal{A}^{H}\right)=\left(d_{1}, \ldots, d_{\ell-1}\right)$ if $|\mathcal{A}|-\left|\mathcal{F}^{H}\right|=d_{\ell}$.

We may play with this in type D_{ℓ} arrangement.

Sandwich Theorem : Example

Sandwich Theorem : Example

Sandwich example

$\mathcal{A}:$ free arrangement with $\exp (\mathcal{A})=(1,3,3,5)$ defined by
$\prod_{i=1}^{4} x_{i} \prod_{a_{2}, a_{3}, a_{4} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right)=0$.

Sandwich Theorem : Example

Sandwich example

$\mathcal{A}:$ free arrangement with $\exp (\mathcal{A})=(1,3,3,5)$ defined by
$\prod_{i=1}^{4} x_{i} \prod_{a_{2}, a_{3}, a_{4} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right)=0$. Take a different flag

$$
\begin{aligned}
Y_{1} & =\left\{x_{1}+x_{2}+x_{3}-x_{4}=0\right\} \\
& \supset Y_{2}:=Y_{1} \cap\left\{x_{1}-x_{2}+x_{3}+x_{4}=0\right\} .
\end{aligned}
$$

Sandwich Theorem : Example

Sandwich example

$\mathcal{A}:$ free arrangement with $\exp (\mathcal{A})=(1,3,3,5)$ defined by
$\prod_{i=1}^{4} x_{i} \prod_{a_{2}, a_{3}, a_{4} \in\{ \pm 1\}}\left(x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right)=0$. Take a different flag

$$
\begin{aligned}
Y_{1} & =\left\{x_{1}+x_{2}+x_{3}-x_{4}=0\right\} \\
& \supset Y_{2}:=Y_{1} \cap\left\{x_{1}-x_{2}+x_{3}+x_{4}=0\right\} .
\end{aligned}
$$

Then is $\mathcal{A}^{Y_{1}}$ free?

Sandwich example

Compute only b_{1} 's!

Then

$$
\begin{aligned}
\exp (\mathcal{A}) & =(1,3,3,5),|\mathcal{A}|=12,\left|\mathcal{A}^{Y_{1}}\right|=7, \\
\left|\mathcal{A}^{Y_{2}}\right| & =4 \Rightarrow \exp \left(\mathcal{A}^{Y_{2}}\right)=(1,3) .
\end{aligned}
$$

Sandwich example

Compute only b_{1} 's!

Then

$$
\begin{aligned}
\exp (\mathcal{A}) & =(1,3,3,5),|\mathcal{A}|=12,\left|\mathcal{A}^{Y_{1}}\right|=7, \\
\left|\mathcal{A}^{Y_{2}}\right| & =4 \Rightarrow \exp \left(\mathcal{A}^{Y_{2}}\right)=(1,3) .
\end{aligned}
$$

Since $|\mathcal{A}|-\left|\mathcal{A}^{Y_{1}}\right|=5 \in \exp (\mathcal{A}) \backslash \exp \left(\mathcal{A}^{Y_{2}}\right)$, Sandwich theorem shows $\mathcal{A}^{Y_{1}}$ is free with $\exp \left(\mathcal{A}^{Y_{1}}\right)=(1,3,3)$.

DF and SS

DF and SS

DF can be regarded as a generalization of supersolvable arrangements (SS).

DF and SS

DF can be regarded as a generalization of supersolvable arrangements (SS).

New(?) characterization of supersolvable arrangement \mathcal{A} is supersolvable if and only if $\exists\left\{X_{i}\right\}$ a flag s.t.

$$
b_{2}(\mathcal{A})=\sum_{i=0}^{\ell-2}\left(\left|\mathcal{A}_{X_{i+2}}\right|-\left|\mathcal{A}_{X_{i+1}}\right|\right)\left|\mathcal{A}_{X_{i+1}}\right| .
$$

DF and SS

DF can be regarded as a generalization of supersolvable arrangements (SS).

New(?) characterization of supersolvable arrangement \mathcal{A} is supersolvable if and only if $\exists\left\{X_{i}\right\}$ a flag s.t.

$$
b_{2}(\mathcal{A})=\sum_{i=0}^{\ell-2}\left(\left|\mathcal{A}_{X_{i+2}}\right|-\left|\mathcal{A}_{X_{i+1}}\right|\right)\left|\mathcal{A}_{X_{i+1}}\right|
$$

In this case, \mathcal{A} is free with $\exp (\mathcal{A})=$ $\left(\left|\mathcal{A}_{X_{\ell}}\right|-\left|\mathcal{A}_{X_{\ell-1}}\right|,\left|\mathcal{A}_{X_{\ell-1}}\right|-\left|\mathcal{A}_{X_{\ell-2}}\right|, \ldots,\left|\mathcal{A}_{X_{1}}\right|\right)$.

Compare SS and DF

Compare SS and DF

SS and DF

$\mathrm{DF} b_{2}(\mathcal{A})=\sum_{i=0}^{\ell-2}\left(\left|\mathcal{A}^{X_{i}}\right|-\left|\mathcal{A}^{X_{i+1}}\right|\right)\left|\mathcal{A}^{X_{i+1}}\right|$ and $\exp (\mathcal{A})=$
$\left(\left|\mathcal{A}^{X_{0}}\right|-\left|\mathcal{A}^{X_{1}}\right|,\left|\mathcal{A}^{X_{1}}\right|-\left|\mathcal{A}^{X_{2}}\right|, \ldots,\left|\mathcal{A}^{X_{\ell-1}}\right|\right)$.
$\mathrm{SS} b_{2}(\mathcal{A})=\sum_{i=0}^{\ell-2}\left(\left|\mathcal{A}_{X_{i+2}}\right|-\left|\mathcal{A}_{X_{i+1}}\right|\right)\left|\mathcal{A}_{X_{i+1}}\right|$ and $\exp (\mathcal{F})=$
$\left(\left|\mathcal{A}_{X_{\ell}}\right|-\left|\mathcal{A}_{X_{\ell-1}}\right|,\left|\mathcal{A}_{X_{\ell-1}}\right|-\left|\mathcal{A}_{X_{\ell-2}}\right|, \ldots,\left|\mathcal{A}_{X_{1}}\right|\right)$.

Compare SS and DF

SS and DF

$\mathrm{DF} b_{2}(\mathcal{A})=\sum_{i=0}^{\ell-2}\left(\left|\mathcal{A}^{X_{i}}\right|-\left|\mathcal{A}^{X_{i+1}}\right|\right)\left|\mathcal{A}^{X_{i+1}}\right|$ and $\exp (\mathcal{A})=$
$\left(\left|\mathcal{A}^{X_{0}}\right|-\left|\mathcal{A}^{X_{1}}\right|,\left|\mathcal{A}^{X_{1}}\right|-\left|\mathcal{A}^{X_{2}}\right|, \ldots,\left|\mathcal{A}^{X_{\ell-1}}\right|\right)$.
$\mathrm{SS} b_{2}(\mathcal{A})=\sum_{i=0}^{\ell-2}\left(\left|\mathcal{A}_{X_{i+2}}\right|-\left|\mathcal{A}_{X_{i+1}}\right|\right)\left|\mathcal{A}_{X_{i+1}}\right|$ and $\exp (\mathcal{F})=$
$\left(\left|\mathcal{A}_{X_{\ell}}\right|-\left|\mathcal{A}_{X_{\ell-1}}\right|,\left|\mathcal{A}_{X_{\ell-1}}\right|-\left|\mathcal{A}_{X_{\ell-2}}\right|, \ldots,\left|\mathcal{A}_{X_{1}}\right|\right)$.
\exists Similarity between SS and DF?

Questions

Questions

Questions

(1) We used only b_{2} for the freeness. How about higher ones?

Questions

Questions

(1) We used only b_{2} for the freeness. How about higher ones?
(2) Division Theorem asserts that \mathcal{A} is free if \mathcal{A}^{H} is free with a combinatorial condition. How about the converse? (A modification of Orlik's conjecture, Sandwich theorem).

Questions

Questions

(1) We used only b_{2} for the freeness. How about higher ones?
(2) Division Theorem asserts that \mathcal{A} is free if \mathcal{A}^{H} is free with a combinatorial condition. How about the converse? (A modification of Orlik's conjecture, Sandwich theorem).
(3) Does the similar statement to division and its flag hold true for other arrangements or divisors?

Thanks

Thank you for your attention!

