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Setup

.
Set-up..

......

A , ∅ : a central ℓ-arrangement in V = Kℓ.
H ∈ A.
A′ := A \ {H}, AH := {L ∩ H | L ∈ A \ {H}}.
⇒ (A,A′,AH): the triple.
L(A) := {∩H∈BH | B ⊂ A}: intersection poset.
Li(A) := {X ∈ L(A) | codimX = i}.
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Localization and restriction

.
Two fundamental operations..

......

For X ∈ L(A), let

AX : = {H ∈ A | X ⊂ H} (localization),

AX : = {H ∩ X | H ∈ A \ AX} (restriction).
.
Flags..

......

A flag F = {Xi}ℓ−1
i=0 of A is a sequence

V = X0 ⊃ X1 ⊃ · · · ⊃ Xℓ−1

such that Xi ∈ Li(A) (i = 0, . . . , ℓ − 1).
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Check definitions by an example!

.
Example..

......

A : arrangement in R4 defined by∏4
i=1 xi

∏
a2,a3,a4∈{±1}(x1 + a2x2 + a3x3 + a4x4) = 0.

Then |A| = 12, and a flag is defined, e,g., by

X1 = {x4 = 0} ⊃ X2 = {x3 = x4 = 0}
⊃ X3 = {x2 = x3 = x4 = 0}.
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Check definition by an example!

.
Example..

......

A: the same arrangement∏4
i=1 xi

∏
a2,a3,a4∈{±1}(x1 + a2x2 + a3x3 + a4x4) = 0.

Then the restrictions are

AX1 :
3∏

i=1

xi

∏
a2,a3∈{±1}

(x1 + a2x2 + a3x3) = 0,

AX2 : x1x2(x
2
1 − x2

2) = 0.
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Remark on flags

.
Remark..

......

{Xi} : flag of A. Then

(1) X0 = V, so AX0 = A.

(2) Xℓ−1 is a line, so AXℓ−1 is a point on the line
Xℓ−1. Hence |AXℓ−1| = 1.

(3) Also, we assume that Xℓ = {0} (essential
arrangement). Hence AXℓ = ∅, and
|AXℓ | = 0.
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Poincarè polynomials

.
Poincar̀e polynomials..

......

π(A; t) :=
∑

X∈L(A) µ(X)(−t)codimX. If K = C, then

π(A; t) = Poin(Cℓ \ ∪H∈AH; t).

It is known that π(A; t) is combinatorial (i.e.,
determined by L(A)). Hence so are all Betti
numbers of the complemeht
M(A) := Cℓ \ ∪H∈AH.
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Definition of freeness

Recall the freeness in general.

.
Free arrangements..

......

Let S= K[x1, . . . , xℓ]. Then

D(A) := {θ ∈ DerS | θ(αH) ∈ SαH (∀H ∈ A)}.

We say A is free with exp(A) = (d1,d2, . . . , dℓ)
if

D(A) = Sθ1 ⊕ Sθ2 ⊕ · · · ⊕ Sθℓ−1

with degθi = di (i = 1, . . . , ℓ).
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Problems on freeness

.
Problems..

......

(1) Are there any relation between freeness
(algebraic structure) of A, and L(A)
(combinatorial structure) of A?

(2) How to determine freeness of an
arrangement?
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An answer to Problem1

.
Factorization Theorem (Terao, 1981)..

......

If A is free with exp(A) = (d1, . . . , dℓ), then
π(A; t) =

∏ℓ
i=1(1+ dit). In particular, A is not

free if π(A; t) is irreducible over Z.

This is an implication from freeness to
combinatorics, and the most important relation
between algebra and combinatorics!

T. Abe (Kyoto University) 2015.8.6 10/ 37



An answer to Problem1

.
Factorization Theorem (Terao, 1981)..

......

If A is free with exp(A) = (d1, . . . , dℓ), then
π(A; t) =

∏ℓ
i=1(1+ dit).

In particular, A is not
free if π(A; t) is irreducible over Z.

This is an implication from freeness to
combinatorics, and the most important relation
between algebra and combinatorics!

T. Abe (Kyoto University) 2015.8.6 10/ 37



An answer to Problem1

.
Factorization Theorem (Terao, 1981)..

......

If A is free with exp(A) = (d1, . . . , dℓ), then
π(A; t) =

∏ℓ
i=1(1+ dit). In particular, A is not

free if π(A; t) is irreducible over Z.

This is an implication from freeness to
combinatorics, and the most important relation
between algebra and combinatorics!

T. Abe (Kyoto University) 2015.8.6 10/ 37



An answer to Problem1

.
Factorization Theorem (Terao, 1981)..

......

If A is free with exp(A) = (d1, . . . , dℓ), then
π(A; t) =

∏ℓ
i=1(1+ dit). In particular, A is not

free if π(A; t) is irreducible over Z.

This is an implication from freeness to
combinatorics, and the most important relation
between algebra and combinatorics!

T. Abe (Kyoto University) 2015.8.6 10/ 37



An answer to Problem 2

.
Addition-Deletion Theorem (Terao, 1980)..

......

For the triple (A,A′,AH), any two of the
following three imply the third:

(1) A is free with exp(A) = (d1, . . . , dℓ−1,dℓ).

(2) A′ is free with
exp(A′) = (d1, . . . , dℓ−1, dℓ − 1).

(3) AH is free with exp(AH) = (d1, . . . , dℓ−1).

By Terao’s factorization, all the π’s above
factorize.
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Addition theorem

Combining two theorems, we may formulate:
.
Theorem (Terao, 1980)..

......

A is free if ∃H ∈ A s.t. A \ {H} and AH are
free, and π(AH; t) divides π(A; t).

This is the most useful way to determine
freeness. The first main theorem in this talk is
the following development of the above.

T. Abe (Kyoto University) 2015.8.6 12/ 37
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Division theorem on freeness

.
Division Theorem (A- )..

......

Assume that for some H ∈ A,

(1) AH is free, and

(2) π(AH; t) | π(A; t).

Then A is free.
.
Compare the addition theorem..

......

Assume that for some H ∈ A,
(1) AH is free, (2) π(AH; t) | π(A; t), and (3)
A \ {H} is free.
Then A is free.
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Example

.
Example : TypeB..

......

Bℓ is defined by
∏ℓ

i=1 xi
∏

1≤i<j≤ℓ(x
2
i − x2

j ) = 0.
B2 is free with π(B2; t) = (1+ t)(1+ 3t),and
π(Bℓ; t) =

∏ℓ
i=1(1+ (2i − 1)t). Hence division

theorem immediately shows that Bℓ are all
free.

Note that all what we did above are
combinatorial, and there are no algebraic
arugument, though we are determining
freeness!
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Combinatorics and division theorem

Key of type B : B2 is free! This comes from;

.
Grothendieck’s Theorem..

......

All arrangement in K2 are free, since it
coincides with a finite set of lines in P1

K. Hence
every torsion free sheaf on it splits into a direct
sum of line bundles.

Hence applying the division theorem
repeatedly, we can obtain a completely
combinatorial way to check the freeness!
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Divisional flag

.
Theorem (A-)..

......

Assume that A has a flag (divisional flag)

V = X0 ⊃ X1 ⊃ · · · ⊃ Xℓ−1

with Xi ∈ Li(A) such that π(AXi+1; t) | π(AXi ; t)
for i = 0. . . . , ℓ − 2. ThenA is free. (Completely
combinatorial!)
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Example

.
Example..

......

A : an arrangement in R4 defined by∏4
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Divisionally free arrangements

As in the previous example, whether A has a
divisional flag or not depends only on L(A), its
combinatorics!
.
Terao’s Conjecture..

......
The freeness of A depends only on L(A), its
combinatorics.

Division theorem and divisional flag work well
when we prove Terao’s conjecture for several
arrangements!

T. Abe (Kyoto University) 2015.8.6 18/ 37
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Divisionally free arrangements

Let us define a new class of free arrangements
in which Terao’s conjecture holds by using
divisional flag!
.
Divisionally free arrangements..

......

A is divisionally free if A has a divisional flag.
Let DF ℓ be the set of all divisionally free
arrangements in Kℓ, and

DF := ∪ℓ≥1DF ℓ.

T. Abe (Kyoto University) 2015.8.6 19/ 37
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Properties ofDF ; Answer to Problem 2

.
Theorem..

......

(1) A is free if A ∈ DF .
(2) Whether A ∈ DF or not depends only on
L(A).
.
Remark..

......

Not all free arrangements are divisionally free!
(e.g., the cone of all the edges and diagonals
of a regular pentagon.)

T. Abe (Kyoto University) 2015.8.6 20/ 37



Properties ofDF ; Answer to Problem 2

.
Theorem..

......

(1) A is free if A ∈ DF .

(2) Whether A ∈ DF or not depends only on
L(A).
.
Remark..

......

Not all free arrangements are divisionally free!
(e.g., the cone of all the edges and diagonals
of a regular pentagon.)

T. Abe (Kyoto University) 2015.8.6 20/ 37



Properties ofDF ; Answer to Problem 2

.
Theorem..

......

(1) A is free if A ∈ DF .
(2) Whether A ∈ DF or not depends only on
L(A).

.
Remark..

......

Not all free arrangements are divisionally free!
(e.g., the cone of all the edges and diagonals
of a regular pentagon.)

T. Abe (Kyoto University) 2015.8.6 20/ 37



Properties ofDF ; Answer to Problem 2

.
Theorem..

......

(1) A is free if A ∈ DF .
(2) Whether A ∈ DF or not depends only on
L(A).
.
Remark..

......

Not all free arrangements are divisionally free!
(e.g., the cone of all the edges and diagonals
of a regular pentagon.)

T. Abe (Kyoto University) 2015.8.6 20/ 37



Inductively free arrangementsIF !

There is a famous classical class similar to
DF :

.
Inductively free arrangements (Terao, 1980)..

......

Define a class of arrangements IF ℓ in Kℓ as
the smallest class of arrangements such that,
IF 1 and IF 2 consist of all arrangements of
each dimension, and A ∈ IF ℓ if ∃H ∈ A such
that A′ := A \ {H} ∈ IF ℓ, AH ∈ IF ℓ−1, and
π(AH; t) | π(A′; t).

A ∈ IF depends only on combinatorics.

T. Abe (Kyoto University) 2015.8.6 21/ 37
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IF andDF

IF has been the only systematic way to check
the combinatorial freeness.

.
Theorem..
......IF ⊊ DF .

The inclusion is clear. The non-equality is
difficult.
In fact, the arrangement A(G31) of the unitary
reflection group G31 satisfies
A(G31) ∈ DF \ IF due to the result by Röhrle
and Hoge.
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The second Betti number andDF

DF is easier to determine than IF ,

but still to
compute π(A; t) is hard!

In fact, the second Betti number is sufficient!
.
The second Betti number..

......

Let b2(A) denote the second Betti number of
M(A) := Cℓ \ ∪H∈AH when K = C. In fact,

b2(A) =
∑

X∈L2(A)

(|AX| − 1)

over an arbitrary field K by Orlik-Solomon.
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b2-type divisional freeness

.
Theorem (A-)..

......

The following are equivalent:

(1) A ∈ DF .

(2) ∃{Xi} a flag s.t.
π(A; t) =

∏ℓ−1
i=0(1+ (|AXi | − |AXi+1|)t).

(3) ∃{Xi} a flag s.t.

b2(A) =
ℓ−2∑
i=0

(|AXi | − |AXi+1|)|AXi+1|.
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(b1,b2)-inequality

In particular, we can show that
.
(b1,b2)-inequality..

......

b2(A) ≥
ℓ−2∑
i=0

(|AXi | − |AXi+1|)|AXi+1|

=

ℓ−2∑
i=0

(b1(AXi) − b1(AXi+1))b1(AXi+1)

for any flag {Xi}, and the equality holds if and
only if A ∈ DF .
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Example again 1

.
Example..

......

A :∏4
i=1 xi

∏
a2,a3,a4∈{±1}(x1 + a2x2 + a3x3 + a4x4) = 0.

Take a flag defined by

X1 = {x4 = 0} ⊃ X2 = {x3 = x4 = 0}
⊃ X3 = {x2 = x3 = x4 = 0}.
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Example again 2

.
Computeb2 andb1’s!..

......

Then

b2(A) = 50, |A| = 12,

|AX1| = 7, |AX2| = 4, |AX3| = 1.

Hence

50= (12− 7)7+ (7− 4)4+ (4− 1)1

confirms that A ∈ DF .
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More applications

.
Applications of divisions..

......

(1) Combinatoriality of most of recursively free
arrangements.

(2) Combinatorial freeness of Coxeter and
unitary reclection arrangements and its
relatives.
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Outline of the proof of division theorem

The proof depends on algebraic geometry
(Horrocks’ splitting criterion) and
multiarrangement theory.
.
Outline of proof..

......

Let TA := D̃0(A) and take H ∈ A. Then A is
free iff TA splits iff TA|H splits by Horrocks.
Hence for the division, we need to approximate
TA|H in terms of AH!
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Outline of the proof

.
How to approximateTA|H in terms ofAH?..

......
We use multiarrangement, or non-reduced
restriction of A onto H!
.
Remark..

......

For b2-version, we use Poincarè polynomial of
multiarrangement by Terao, Wakefield and
myself. That is close to Chern polynomial of
TA|H by Schulze, A-Yoshinaga and
Denham-Schulze. i.p., b2(A) = c2(TA) by
Denham-Schulze.
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multiarrangement by Terao, Wakefield and
myself. That is close to Chern polynomial of
TA|H by Schulze, A-Yoshinaga and
Denham-Schulze. i.p., b2(A) = c2(TA) by
Denham-Schulze.

T. Abe (Kyoto University) 2015.8.6 30/ 37



Converse of division : Sandwich Theorem

Division asserts that freeness of AH implies
that of A. How about the converse?
.
Sandwich Theorem (A-)..

......

Let H , L ∈ A, X := H ∩ L ∈ L2(A).Assume
that A and AX are free with
exp(A) = (d1, . . . , dℓ), exp(AX) = (d1, . . . , dℓ−2).
Then AH is free with exp(AH) = (d1, . . . , dℓ−1) if
|A| − |AH | = dℓ.

We may play with this in type Dℓ arrangement.
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Then AH is free with exp(AH) = (d1, . . . , dℓ−1) if
|A| − |AH | = dℓ.

We may play with this in type Dℓ arrangement.
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Sandwich Theorem : Example

.
Sandwich example..

......

A : free arrangement with exp(A) = (1,3,3,5)
defined by∏4

i=1 xi
∏

a2,a3,a4∈{±1}(x1 + a2x2 + a3x3 + a4x4) = 0.
Take a different flag

Y1 = {x1 + x2 + x3 − x4 = 0}
⊃ Y2 := Y1 ∩ {x1 − x2 + x3 + x4 = 0}.

Then is AY1 free?
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Sandwich example

.
Compute onlyb1’s!..

......

Then

exp(A) = (1, 3, 3, 5), |A| = 12, |AY1| = 7,

|AY2| = 4⇒ exp(AY2) = (1,3).

Since |A| − |AY1| = 5 ∈ exp(A) \ exp(AY2),
Sandwich theorem shows AY1 is free with
exp(AY1) = (1,3,3).
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DF and SS

DF can be regarded as a generalization of
supersolvable arrangements (SS).
.
New(?) characterization of supersolvable arrangement..

......

A is supersolvable if and only if ∃{Xi} a flag s.t.

b2(A) =
ℓ−2∑
i=0

(|AXi+2| − |AXi+1|)|AXi+1|.

In this case, A is free with exp(A) =
(|AXℓ | − |AXℓ−1|, |AXℓ−1| − |AXℓ−2|, . . . , |AX1|).
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Compare SS and DF

.
SS and DF..

......

DF b2(A) =
∑ℓ−2

i=0(|AXi | − |AXi+1|)|AXi+1| and
exp(A) =
(|AX0| − |AX1|, |AX1| − |AX2|, . . . , |AXℓ−1|).

SSb2(A) =
∑ℓ−2

i=0(|AXi+2| − |AXi+1|)|AXi+1| and
exp(A) =
(|AXℓ | − |AXℓ−1|, |AXℓ−1| − |AXℓ−2|, . . . , |AX1|).

∃Similarity between SS and DF?
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Questions

.
Questions..

......

(1) We used only b2 for the freeness. How
about higher ones?
(2) Division Theorem asserts that A is free if
AH is free with a combinatorial condition. How
about the converse? (A modification of Orlik’s
conjecture, Sandwich theorem).
(3) Does the similar statement to division and
its flag hold true for other arrangements or
divisors?
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Thanks

Thank you for your attention!
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