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Hessenberg varieties Hess(X, h) are subvarieties of the flag variety
Flag(Cn) defined by two parameters:

(1) a linear operator X on Cn; and
(2) a Hessenberg function h : [n] → [n].

Their geometry and (equivariant) topology have been studied exten-
sively since the late 1980s (see [2], [3] for example). This subject lies
at the intersection of, and makes connections between, many research
areas such as: geometric representation theory, combinatorics, and al-
gebraic geometry and topology. Hessenberg varieties also arise in the
study of the quantum cohomology of the flag variety (see the references
in the research announcement [1]).

The Hessenberg variety Hess(X, h) is called regular nilpotent when
X is nilpotent and of full rank and regular semisimple when X is
semisimple with distinct eigenvalues. The class of regular nilpotent
Hessenberg varieties contains Peterson varieties while the class of reg-
ular semisimple Hessenberg varieties contains the toric varieties asso-
ciated with Weyl chambers of type A.

In this talk, we will discuss the cohomology ring of a regular nilpo-
tent Hessenberg variety and its relation to the cohomology ring of a
regular semisimple Hessenberg variety (with a common h) in terms of
representations of the symmetric group Sn. If time permits, I will
explain its relation to the chromatic symmetric function of a graph
associated with h (Shareshian-Wachs conjecture). This is a joint work
with Hiraku Abe, Megumi Harada and Tatsuya Horiguchi.
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