Cutting, embedding, bouncing characteristic classes

Pavle Blagojević

Free University, Berlin, Germany
Mathematical Institute SASA, Belgrade, Serbia
based on joint work with Imre Bárány, Frederick Cohen, Wolfgang Lück, Roman Karasev, András Szứch and Günter M. Ziegler
supported by Anthony Bahri, Martin Bendersky, Peter Landweber, and John McCleary

Cutting

Conjecture (Nandakumar \& Ramana Rao 2006)

Every convex polygon P in the plane can be partitioned into any prescribed number k of convex pieces that have equal area and equal perimeter.

Cutting

Conjecture (Nandakumar \& Ramana Rao 2006)

Every convex polygon P in the plane can be partitioned into any prescribed number k of convex pieces that have equal area and equal perimeter.

Cutting

Conjecture (Nandakumar \& Ramana Rao 2006)

Every convex polygon P in the plane can be partitioned into any prescribed number k of convex pieces that have equal area and equal perimeter.

Cutting

Conjecture (Nandakumar \& Ramana Rao 2006)

Every convex polygon P in the plane can be partitioned into any prescribed number k of convex pieces that have equal area and equal perimeter.

Cutting

Conjecture (Nandakumar \& Ramana Rao 2006)

Every convex polygon P in the plane can be partitioned into any prescribed number k of convex pieces that have equal area and equal perimeter.

Cutting

Conjecture (Nandakumar \& Ramana Rao 2006)

Every convex polygon P in the plane can be partitioned into any prescribed number k of convex pieces that have equal area and equal perimeter.

Cutting

Conjecture (Nandakumar \& Ramana Rao 2006)

Every convex polygon P in the plane can be partitioned into any prescribed number k of convex pieces that have equal area and equal perimeter.

Cutting

Conjecture (Nandakumar \& Ramana Rao 2006)

Every convex polygon P in the plane can be partitioned into any prescribed number k of convex pieces that have equal area and equal perimeter.

Cutting

TECH-MUSINGS

Thoughts On Algorithms, Geometry etc...
(1) THURSDAY, SEPTEMBER 28, 2006

'Fair' Partitions

Let us (N. Ramana Rao and self) float yet another geometric conjecture
*ぇ**
Given any convex shape and any positive integer N . There exist some way(s) of partitioning this shape into N convex pieces so that all pieces have equal area and equal perimeter.

Note: We could define the 'fair partition' of a polygon as a partition into pieces of equal area and perimeter and further, a 'convex fair partition' as a fair partition in which the pieces are also convex. The claim above could be restated as: "for any N , any convex shape allows convex fair partitioning into
$\leftrightarrow \nrightarrow$ About Me

Name:
R.Nandakumar

Location:
India
Computer Programmer, Student of Mathematics, General Dabbler.
: View my complete profile
$\leftrightarrow \rightarrow$ Previous Posts
Traversing A Tree
A Sequence Puzzle

Cutting

> I could not find any known result on this - although there has been work on dividing into pieces so that every piece has same area and the same fraction of the outer boundary of the target. The requirement that all pieces should have same perimeter is not very easy to ensure - at least not as easy as ensuring equal areas for them. One does not know ab initio what precise perimeter each piece should have!

Embedding

Definition

A continuous map $f: X \rightarrow \mathbb{R}^{N}\left(\mathbb{C}^{N}\right)$ is k-regular if for every pairwise distinct points x_{1}, \ldots, x_{k} the vectors $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$ are linearly independent.

Embedding

Definition

A continuous map $f: X \rightarrow \mathbb{R}^{N}\left(\mathbb{C}^{N}\right)$ is k-regular if for every pairwise distinct points x_{1}, \ldots, x_{k} the vectors $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$ are linearly independent.
Example
(1) $f: \mathbb{R} \rightarrow \mathbb{R}^{k}, f(t)=\left(1, t, \ldots, t^{k-1}\right)$ is a k-regular map.

Embedding

Definition

A continuous map $f: X \rightarrow \mathbb{R}^{N}\left(\mathbb{C}^{N}\right)$ is k-regular if for every pairwise distinct points x_{1}, \ldots, x_{k} the vectors $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$ are linearly independent.
Example
(1) $f: \mathbb{R} \rightarrow \mathbb{R}^{k}, f(t)=\left(1, t, \ldots, t^{k-1}\right)$ is a k-regular map.

(2) $f: \mathbb{C} \rightarrow \mathbb{R} \times \mathbb{C}^{k-1}, f(z)=\left(1, z, \ldots, z^{k-1}\right)$ is k-regular.

Embedding

Definition

A continuous map $f: X \rightarrow \mathbb{R}^{N}\left(\mathbb{C}^{N}\right)$ is k-regular if for every pairwise distinct points x_{1}, \ldots, x_{k} the vectors

$$
f\left(x_{1}\right), \ldots, f\left(x_{k}\right) \text { are linearly independent. }
$$

Example

(1) $f: \mathbb{R} \rightarrow \mathbb{R}^{k}, f(t)=\left(1, t, \ldots, t^{k-1}\right)$ is a k-regular map.

(2) $f: \mathbb{C} \rightarrow \mathbb{R} \times \mathbb{C}^{k-1}, f(z)=\left(1, z, \ldots, z^{k-1}\right)$ is k-regular.
(3) $f: \mathbb{C} \rightarrow \mathbb{C}^{k}, f(z)=\left(1, z, \ldots, z^{k-1}\right)$ is complex k-regular.

Conjecture (Cohen \& Handel 1978, Chisholm 1979)
If $\mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ is k-regular, then $N \geq d\left(k-\alpha_{2}(k)\right)+\alpha_{2}(k)$.

Further embeddings

Definition
Affine subspaces L_{1}, \ldots, L_{ℓ} of \mathbb{R}^{N} are affinely independent if $\operatorname{dim} \operatorname{aff}\left(L_{1} \cup \cdots \cup L_{\ell}\right)=\left(\operatorname{dim} L_{1}+1\right)+\cdots+\left(\operatorname{dim} L_{\ell}+1\right)-1$.

Further embeddings
Definition
Affine subspaces L_{1}, \ldots, L_{ℓ} of \mathbb{R}^{N} are affinely independent if

$$
\operatorname{dim} \operatorname{aff}\left(L_{1} \cup \cdots \cup L_{\ell}\right)=\left(\operatorname{dim} L_{1}+1\right)+\cdots+\left(\operatorname{dim} L_{\ell}+1\right)-1
$$

Definition

A smooth map $f: M \rightarrow \mathbb{R}^{N}$ is ℓ-skew if pairwise distinct points y_{1}, \ldots, y_{ℓ} on M the affine subspaces

$$
\left(\iota \circ d f_{y_{1}}\right)\left(T_{y_{1}} M\right), \ldots,\left(\iota \circ d f_{y_{\ell}}\right)\left(T_{y_{\ell}} M\right)
$$

are affinely independent.
Here df: $T M \rightarrow T \mathbb{R}^{N}$ and $\iota: T \mathbb{R}^{N} \rightarrow \mathbb{R}^{N},(x, v) \mapsto x+v$.

Further embeddings
Definition
Affine subspaces L_{1}, \ldots, L_{ℓ} of \mathbb{R}^{N} are affinely independent if

$$
\operatorname{dim} \operatorname{aff}\left(L_{1} \cup \cdots \cup L_{\ell}\right)=\left(\operatorname{dim} L_{1}+1\right)+\cdots+\left(\operatorname{dim} L_{\ell}+1\right)-1
$$

Definition

A smooth map $f: M \rightarrow \mathbb{R}^{N}$ is ℓ-skew if pairwise distinct points y_{1}, \ldots, y_{ℓ} on M the affine subspaces

$$
\left(\iota \circ d f_{y_{1}}\right)\left(T_{y_{1}} M\right), \ldots,\left(\iota \circ d f_{y_{\ell}}\right)\left(T_{y_{\ell}} M\right)
$$

are affinely independent.
Here $d f: T M \rightarrow T \mathbb{R}^{N}$ and $\iota: T \mathbb{R}^{N} \rightarrow \mathbb{R}^{N},(x, v) \mapsto x+v$.

Conjecture

If $\mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ is ℓ-skew, then

$$
N \geq 2^{\gamma(d)}\left(\ell-\alpha_{2}(\ell)\right)+(d+1) \alpha_{2}(\ell)
$$

where $\gamma(d)=\left\lfloor\log _{2} d\right\rfloor+1$.

Bouncing

A billiard trajectory of length k in a smooth strictly convex body $T^{d} \subset \mathbb{R}^{d}$ is a sequence $\left(x_{0}, \ldots, x_{k}\right)$ of points on ∂T^{d} such that for every $0<i<k+1$ the interior normal to ∂T^{d} at the point x_{i} bisects the angle $\angle x_{i-1} x_{i} x_{i+1}$.

Bouncing

A billiard trajectory of length k in a smooth strictly convex body $T^{d} \subset \mathbb{R}^{d}$ is a sequence $\left(x_{0}, \ldots, x_{k}\right)$ of points on ∂T^{d} such that for every $0<i<k+1$ the interior normal to ∂T^{d} at the point x_{i} bisects the angle $\angle x_{i-1} x_{i} x_{i+1}$.
If $x_{0}=x_{k}$ then the billiard trajectory $\left(x_{0}, \ldots, x_{k}\right)$ is called periodic billiard trajectory of period n if the normal to ∂T^{d} at the point x_{0} bisects the angle $\angle x_{k-1} x_{0} x_{1}$.

Bouncing

A billiard trajectory of length k in a smooth strictly convex body $T^{d} \subset \mathbb{R}^{d}$ is a sequence $\left(x_{0}, \ldots, x_{k}\right)$ of points on ∂T^{d} such that for every $0<i<k+1$ the interior normal to ∂T^{d} at the point x_{i} bisects the angle $\angle x_{i-1} x_{i} x_{i+1}$.
If $x_{0}=x_{k}$ then the billiard trajectory $\left(x_{0}, \ldots, x_{k}\right)$ is called periodic billiard trajectory of period n if the normal to ∂T^{d} at the point x_{0} bisects the angle $\angle x_{k-1} x_{0} x_{1}$.
Problem
Let and $T^{d} \subset \mathbb{R}^{d}$ be a smooth strictly convex body. Estimate the number of periodic billiard trajectories $N\left(T^{d}, k\right)$ of the period k on the body T^{d} modulo the action of dihedral group $D_{2 k}$.

The vector bundle

- \mathbb{R}^{k} is a \mathfrak{S}_{k}-representation, where \mathfrak{S}_{k} permutes coordinates
- $W_{k}:=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}: \sum_{i=1}^{k} x_{i}=0\right\}$ a subrepresentation
- $T_{k}:=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}: x_{1}=\cdots=x_{k}\right\}$ a subrepresentation

$$
\mathbb{R}^{k} \cong W_{k} \oplus T_{k}
$$

$$
\begin{gathered}
\mathbb{R}^{k} \longrightarrow F(X, k) \times \mathbb{R}^{k} \\
F(X, k)
\end{gathered}
$$

The vector bundle

- \mathbb{R}^{k} is a \mathfrak{S}_{k}-representation, where \mathfrak{S}_{k} permutes coordinates
- $W_{k}:=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}: \sum_{i=1}^{k} x_{i}=0\right\}$ a subrepresentation
- $T_{k}:=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}: x_{1}=\cdots=x_{k}\right\}$ a subrepresentation

$$
\mathbb{R}^{k} \cong W_{k} \oplus T_{k}
$$

$$
\begin{array}{r}
\mathbb{R}^{k} \longrightarrow \\
F(X, k) \times \mathfrak{S}_{k} \mathbb{R}^{k} \\
F(X, k) / \mathfrak{S}_{k}
\end{array}
$$

The vector bundle

$$
\begin{aligned}
\xi_{X, k}: & \mathbb{R}^{k} \longrightarrow F(X, k) \times_{\mathfrak{G}_{k}} \mathbb{R}^{k} \longrightarrow F(X, k) / \mathfrak{S}_{k} \\
\xi_{X, k}: & W_{k} \longrightarrow F(X, k) \times_{\mathfrak{S}_{k}} W_{k} \longrightarrow F(X, k) / \mathfrak{S}_{k} \\
& \tau_{X, k}: \\
& T_{k} \longrightarrow F(X, k) / \mathfrak{S}_{k} \times T_{k} \longrightarrow F(X, k) / \mathfrak{S}_{k} \\
& \xi_{X, k} \cong \zeta_{X, k} \oplus \tau_{X, k}
\end{aligned}
$$

The vector bundle

$$
\begin{array}{cc}
\xi_{X, k}: & \mathbb{R}^{k} \longrightarrow F(X, k) \times_{\mathfrak{S}_{k}} \mathbb{R}^{k} \longrightarrow F(X, k) / \mathfrak{S}_{k} \\
\zeta_{X, k}: & W_{k} \longrightarrow F(X, k) \times_{\mathfrak{S}_{k}} W_{k} \longrightarrow F(X, k) / \mathfrak{S}_{k} \\
\tau_{X, k}: & T_{k} \longrightarrow F(X, k) / \mathfrak{S}_{k} \times T_{k} \longrightarrow F(X, k) / \mathfrak{S}_{k} \\
& \xi_{X, k} \cong \zeta_{X, k} \oplus \tau_{X, k} \\
& \\
w\left(\xi_{X, k}\right)= & w\left(\zeta_{X, k}\right) \cdot w\left(\tau_{X, k}\right)=w\left(\zeta_{X, k}\right) \\
c\left(\xi_{X, k} \otimes \mathbb{C}\right) & =c\left(\zeta_{X, k} \otimes \mathbb{C}\right) \cdot c\left(\tau_{X, k} \otimes \mathbb{C}\right)=c\left(\zeta_{X, k} \otimes \mathbb{C}\right)
\end{array}
$$

The vector bundle

$$
\xi X, k: \quad \mathbb{R}^{k} \longrightarrow F(X, k) \times_{\mathfrak{S}_{k}} \mathbb{R}^{k} \longrightarrow F(X, k) / \mathfrak{S}_{k}
$$

- $\xi_{\mathbb{R}^{d}, 2}$ is stably isomorphic to the canonical bundle over $\mathbb{R} P^{d-1}$
- F. Cohen, R. Cohen, Kuhn, Neisendorfer:

Bundles over configuration spaces,
Pacific J. of Math., 1983
Stable order of $\xi_{\mathbb{R}^{d}, k}=$ minimal m such that $m \xi_{\mathbb{R}^{d}, k}$ stabely trivial

$$
=2^{\rho(d-1)} \Pi_{3 \leq p \leq k} p^{p^{\left.\frac{d-1}{2}\right\rfloor} \text { for } d \neq 0 \bmod 4}
$$

Connection

cutting
k-regular
ℓ-skew
comp. k-regular
bouncing
$e\left(\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}, \mathcal{Z}^{\otimes d-1}\right)$
$H^{*}\left(F\left(\mathbb{R}^{d}, k\right) / \mathfrak{S}_{k} ; \mathcal{Z}^{\otimes d-1}\right)$

$$
\overline{w^{\prime}}(d-1)\left(k-\alpha_{2}(k)\right)\left(\xi_{\mathbb{R}^{d}, k}\right)
$$

$$
H^{*}\left(F\left(\mathbb{R}^{d}, k\right) / \mathfrak{S}_{k} ; \mathbb{F}_{2}\right)
$$

$\bar{W}_{(2 \gamma(d)-d-1)\left(\ell-\alpha_{2}(\ell)\right)}\left(\xi_{\mathbb{R}^{d}, \ell}^{\oplus d+1}\right)$
$H^{*}\left(F\left(\mathbb{R}^{d}, k\right) / \mathfrak{S}_{k} ; \mathbb{F}_{2}\right)$
$H^{*}\left(F\left(\mathbb{R}^{d}, k\right) / \mathfrak{S}_{k} ; \mathbb{F}_{p}\right)$
$H^{*}\left(F\left(\mathbb{R}^{d}, p\right) / \mathfrak{S}_{p} ; \mathcal{Z}^{\otimes d-1}\right)$

Cutting polygons and the twisted Euler class of $\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}$

Cutting polygons and the twisted Euler class of $\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}$

Cutting polygons and the twisted Euler class of $\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}$

Cutting polygons and the twisted Euler class of $\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}$

Cutting polygons and the twisted Euler class of $\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}$
Voronoi diagrams $\mathcal{V}\left(x_{1}, \ldots, x_{k}\right)=\left(C_{1}, \ldots, C_{k}\right)$
$C_{i}:=\left\{x \in \mathbb{R}^{d}:\left\|x-x_{i}\right\| \leq\left\|x-x_{j}\right\|\right.$ for $\left.1 \leq j \leq k\right\}$
$=\left\{x \in \mathbb{R}^{d}:\left\|x-x_{i}\right\|^{2}-\|x\|^{2} \leq\left\|x-x_{j}\right\|^{2}-\|x\|^{2}\right.$ for $\left.1 \leq j \leq k\right\}$.

Generalized Voronoi diagrams $\mathcal{P}\left(x_{1}, \ldots, x_{k} ; w_{1}, \ldots, w_{k}\right)=\left(P_{1}, \ldots, P_{k}\right)$ where $w_{1}, \ldots, w_{n} \in \mathbb{R}$ and

$$
P_{i}:=\left\{x \in \mathbb{R}^{d}:\left\|x-x_{i}\right\|^{2}-w_{i} \leq\left\|x-x_{j}\right\|^{2}-w_{j} \text { for } 1 \leq j \leq k\right\} .
$$

Theorem (Kantorovich 1939, etc.)
Let μ_{d} be an absolutely continuous probability measure on \mathbb{R}^{d} and $k \geq 2$. Then for any $x_{1}, \ldots, x_{k} \in \mathbb{R}^{d}$ with $x_{i} \neq x_{j}$ for all $1 \leq i<j \leq h$ there are weights $w_{1}, \ldots, w_{h} \in \mathbb{R}, w_{1}+\cdots+w_{k}=0$, such that the generalized Voronoi diagram $\mathcal{P}\left(x_{1}, \ldots, x_{k} ; w_{1}, \ldots, w_{k}\right)$ equiparts the measure μ_{d}. Moreover, the weights w_{1}, \ldots, w_{k}

- are unique,
- depend continuously on x_{1}, \ldots, x_{k}.

Cutting polygons and the twisted Euler class of $\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}$
K a convex body in the plane \mathbb{R}^{2}
$a=p\left(K \cap P_{1}\right)+\cdots+p\left(K \cap P_{k}\right)$

$$
\begin{gather*}
\left(x_{1}, \ldots, x_{k}\right) \longrightarrow\left(P_{1}, \ldots, P_{k}\right) \longrightarrow\left(p\left(K \cap P_{1}\right)-\frac{a}{k}, \ldots, p\left(K \cap P_{k}\right)-\frac{a}{k}\right) \\
F\left(\mathbb{R}^{2}, k\right) \longrightarrow W_{k} \tag{k}
\end{gather*}
$$

Theorem

(1) If there is no $\mathfrak{S}_{k}-\operatorname{map} F\left(\mathbb{R}^{2}, k\right) \longrightarrow \mathfrak{S}_{k} S\left(W_{k}\right)$, then the k Nandakumar \& Ramana Rao conjecture has a solution.
(2) If $\zeta_{\mathbb{R}^{d} \cdot k}$ does not have a nowhere nonzero cross-section, then there is no \mathfrak{S}_{k}-map $F\left(\mathbb{R}^{2}, k\right) \longrightarrow_{\mathfrak{S}_{k}} S\left(W_{k}\right)$.
(3) If the twisted Euler class of $\zeta_{\mathbb{R}^{d}, k}$ does not vanish, then $\zeta_{\mathbb{R}^{d}, k}$ does not have a nowhere nonzero cross-section.

Cutting polygons and the twisted Euler class of $\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}$

Theorem (B., Ziegler, 2014)
$e\left(\zeta_{\mathbb{R}^{d}, k}^{\varrho_{d}-1}, \mathcal{Z}^{\otimes d-1}\right) \neq 0$ if and only if k is a prime power.
k-regular maps and the dual Stiefel-Whitney class $\bar{w}_{(d-1)\left(k-\alpha_{2}(k)\right)}\left(\xi_{\mathbb{R}^{d}, k}\right)$

- $f: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{N}$ a k-regular $\left(f: \mathbb{C}^{d} \longrightarrow \mathbb{C}^{N}\right.$ complex k-regular $)$
- $\left(x_{1}, \ldots, x_{k}\right) \longmapsto\left(f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right)$ $F\left(\mathbb{R}^{d}, k\right) \longrightarrow \mathfrak{S}_{k} V_{k}\left(\mathbb{R}^{N}\right)$

$$
F\left(\mathbb{C}^{d}, k\right) \longrightarrow \mathfrak{s}_{k} V_{k}^{\mathbb{C}}\left(\mathbb{C}^{N}\right)
$$

k-regular maps and the dual Stiefel-Whitney class $\bar{w}_{(d-1)\left(k-\alpha_{2}(k)\right)}\left(\xi_{\mathbb{R}^{d}, k}\right)$

- $f: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{N}$ a k-regular $\left(f: \mathbb{C}^{d} \longrightarrow \mathbb{C}^{N}\right.$ complex k-regular $)$
- $\left(x_{1}, \ldots, x_{k}\right) \longmapsto\left(f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right)$

$$
F\left(\mathbb{R}^{d}, k\right) \longrightarrow \mathfrak{s}_{k} V_{k}\left(\mathbb{R}^{N}\right) \quad F\left(\mathbb{C}^{d}, k\right) \longrightarrow \mathfrak{s}_{k} V_{k}^{\mathbb{C}}\left(\mathbb{C}^{N}\right)
$$

- Lemma [Cohen \& Handel, 1978]
$F\left(\mathbb{R}^{d}, k\right) \longrightarrow \mathfrak{S}_{k} V_{k}\left(\mathbb{R}^{N}\right)$ exists $\Longleftrightarrow \xi_{\mathbb{R}^{d}, k}$ has $(N-k)$-inv.
- Lemma

$$
\bar{w}_{(d-1)\left(k-\alpha_{2}(k)\right)}\left(\xi_{\mathbb{R}^{d}, k}\right) \neq 0 \Longrightarrow
$$

no k-regular map $\mathbb{R}^{d} \longrightarrow \mathbb{R}^{d\left(k-\alpha_{2}(k)\right)+\alpha_{2}(k)-1}$
k-regular maps and the dual Stiefel-Whitney class $\bar{w}_{(d-1)\left(k-\alpha_{2}(k)\right)}\left(\xi_{\mathbb{R}^{d}, k}\right)$

Theorem (B., Lück, Ziegler 2013)
If $d \geq 2$, then $\bar{w}_{(d-1)\left(k-\alpha_{2}(k)\right)}\left(\xi_{\mathbb{R}^{d}, k}\right) \neq 0$.

- $d=2$: Cohen \& Handel 1978,
- $d=2^{m}$: Chisholm 1979

Billiards and $e\left(\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}, \mathcal{Z}^{\otimes d-1}\right)$ for k an odd prime

Problem

Let $d, k \geq 2$ and $T^{d} \subset \mathbb{R}^{d}$ be a smooth strictly convex body. Estimate the number of periodic billiard trajectories $N\left(T^{d}, k\right)$ of the period k on the body T^{d} modulo the action of dihedral group $D_{2 k}$.

- k is an odd prime
- $G\left(S^{d-1}, k\right)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in\left(S^{d-1}\right)^{k}: x_{i} \neq x_{i+1}\right\}$
- $L: G\left(S^{d-1}, k\right) \longrightarrow \mathbb{R},\left(x_{1}, \ldots, x_{k}\right) \longmapsto-\sum\left|x_{i}-x_{i+1}\right|$
- Lemma
$\left(x_{1}, \ldots, x_{k}\right)$ periodic traj. $\Longleftrightarrow\left(x_{1}, \ldots, x_{k}\right)$ critical pt. of L
- $N\left(T^{d}, k\right) \geq \operatorname{cat}\left(G\left(S^{d-1}, k\right) / D_{2 k}\right)$
- $N\left(T^{d}, k\right) \geq \operatorname{cat}\left(G\left(S^{d-1}, k\right) / D_{2 k}\right) \geq \operatorname{cat}\left(G\left(S^{d-1}, k\right) / \mathbb{Z} / k\right)$ $\geq \max \left\{\operatorname{wgt}(a): a \in H^{*}\left(G\left(S^{d-1}, k\right) / \mathbb{Z} / k ; \mathbb{F}_{k}\right)\right.$

Billiards and $e\left(\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}, \mathcal{Z}^{\otimes d-1}\right)$ for k an odd prime

$$
F\left(R^{d-1}, k\right) / Z / k \longrightarrow G\left(S^{d-1}, k\right) / Z / k \longrightarrow \mathrm{~B} \mathbb{Z} / k
$$

$$
\begin{gather*}
H^{*}\left(F\left(R^{d-1}, k\right) / Z / k\right) \longleftarrow H^{*}\left(G\left(S^{d-1}, k\right) / Z / k\right) \longleftarrow H^{*}(\mathrm{~B} \mathbb{Z} / k) \\
0 \neq a^{*} \longleftarrow a
\end{gather*}
$$

Billiards and $e\left(\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}, \mathcal{Z}^{\otimes d-1}\right)$ for k an odd prime

$$
\begin{aligned}
& F\left(R^{d-1}, k\right) / Z / k \longrightarrow G\left(S^{d-1}, k\right) / Z / k \longrightarrow B \mathbb{Z} / k \\
& H^{*}\left(F\left(R^{d-1}, k\right) / Z / k\right) \longleftarrow H^{*}\left(G\left(S^{d-1}, k\right) / Z / k\right) \longleftarrow H^{*}(\mathrm{~B} \mathbb{Z} / k) \\
& 0 \neq a^{*} \longleftarrow a \\
& a^{*}=(\text { reduction of coefficients }) \circ\left(\mathrm{res} \mathbb{Z}_{\mathbb{Z} / k}^{\mathcal{G} /}\right)\left(e\left(\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}, \mathcal{Z}^{\otimes d-1}\right)\right)
\end{aligned}
$$

Billiards and $e\left(\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}, \mathcal{Z}^{\otimes d-1}\right)$ for k an odd prime

Base on the work of Farber and Farber \& Tabachnikov:

Theorem (Karasev, 2009)
Let $d \geq 3$ and $k>2$ be a prime. Then

$$
N\left(T^{d}, k\right) \geq(d-2)(k-1)+2
$$

How do we actually compute these classes?

How do we actually compute these classes?
"Proofs should be communicated only by consenting adults in private." - Victor Klee (U. Washington)

A glimpse into the proof of $e\left(\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}, \mathcal{Z}^{\otimes d-1}\right) \neq 0$

A glimpse into the proof of $e\left(\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}, \mathcal{Z}^{\otimes d-1}\right) \neq 0$

$$
F\left(\mathbb{R}^{d}, k\right) \longrightarrow \mathfrak{s}_{k} S\left(W_{k}^{\oplus d-1}\right)
$$

if and only if

$$
\operatorname{gcd}\left\{\binom{k}{1},\binom{k}{2}, \ldots,\binom{k}{k-1}\right\}=1
$$

A glimpse into the proof of $e\left(\zeta_{\mathbb{R}^{d}, k}^{\oplus d-1}, \mathcal{Z}^{\otimes d-1}\right) \neq 0$

$$
F\left(\mathbb{R}^{d}, k\right) \xrightarrow[\mathfrak{E}_{k}]{ } S\left(W_{k}^{\otimes d-1}\right)
$$

if and only if

$$
\operatorname{gcd}\left\{\binom{k}{1},\binom{k}{2}, \ldots,\binom{k}{k-1}\right\}=1
$$

Theorem (Ram 1909)

For all $n \in \mathbb{N}$ we have

$$
\operatorname{gcd}\left\{\binom{k}{1},\binom{k}{2}, \ldots,\binom{k}{k-1}\right\}= \begin{cases}p & \text { if } k \text { is a prime power } p^{\ell}, \\ 1 & \text { otherwise. }\end{cases}
$$

A glimpse into the proof of $\bar{w}_{(d-1)\left(k-\alpha_{2}(k)\right)}\left(\xi_{\mathbb{R}^{d}, k}\right) \neq 0$

$$
\begin{aligned}
& \bar{W}(d-1)(k-1) \\
& =\sum_{\substack{j_{1}, \ldots, j_{k-1} \geq 0 \\
j_{1}+2 j_{2}+\cdots+(k-1) j_{k-1}=(d-1)(k-1)}}\binom{j_{1}+\cdots+j_{k-1}}{j_{1}, j_{2}, \ldots, j_{k-1}} w_{1}^{j_{1}} \cdots w_{k-1}^{j_{k-1}} \\
& =w_{k-1}^{d-1}+\sum_{\substack{j_{1}, \ldots, j_{k-2} \geq 0 ; d-2 \geq j_{k-1} \geq 0 \\
j_{1}+2 j_{2}+\cdots+(k-1) j_{k-1}=(d-1)(k-1)}}\binom{j_{1}+\cdots+j_{k-1}}{j_{1}, j_{2}, \ldots, j_{k-1}} w_{1}^{j_{1}} \cdots w_{k-1}^{j_{k-1}}, \\
& \left(\begin{array}{c}
j_{1}+\cdots+j_{k-1} \\
j_{1}, \\
i_{2},
\end{array}\right)=\frac{\left(j_{1}+\cdots+j_{k-1}\right)!}{\left(j_{1}\right)!\cdots\left(j_{k-1}\right)!}
\end{aligned}
$$

A glimpse into the proof of $\bar{w}_{(d-1)\left(k-\alpha_{2}(k)\right)}\left(\xi_{\mathbb{R}^{d}, k}\right) \neq 0$

$$
\begin{aligned}
& \bar{W}_{(d-1)(k-1)} \\
& =\sum_{\substack{j_{1}, \ldots, j_{k-1} \geq 0 \\
j_{1}+2 j_{2}+\cdots+(k-1) j_{k-1}=(d-1)(k-1)}}\binom{j_{1}+\cdots+j_{k-1}}{j_{1}, j_{2}, \ldots, j_{k-1}} w_{1}^{j_{1}} \cdots w_{k-1}^{j_{k-1}} \\
& =w_{k-1}^{d-1}+\sum_{\substack{j_{1}, \ldots, j_{k-2} \geq 0 ; d-2 \geq j_{k-1} \geq 0 \\
j_{1}+2 j_{2}+\cdots+(k-1) j_{k-1}=(d-1)(k-1)}}\binom{j_{1}+\cdots+j_{k-1}}{j_{1}, j_{2}, \ldots, j_{k-1}} w_{1}^{j_{1}} \cdots w_{k-1}^{j_{k-1}}, \\
& \left.\left(\begin{array}{c}
j_{1}+\cdots+j_{k-1} \\
j_{1}, \\
i_{2}
\end{array}\right) \ldots, j_{k-1}\right)=\frac{\left(j_{1}+\cdots+j_{k-1}\right)!}{\left(j_{1}\right)!\cdots\left(j_{k-1}\right)!}
\end{aligned}
$$

- Cohen \& Handel, 1978, $d=2: \quad \bar{w}_{(d-1)(k-1)}=\bar{w}_{k-1}=w_{k-1} \neq 0$,
- Chisholm, 1979, $d=2^{m}: \quad w_{(d-1)(k-1)} \neq 0 \quad$ and $\quad \frac{\left(j_{1}+\cdots+j_{k-1}\right)!}{\left(j_{1}\right)!\cdots\left(j_{k-1}\right)!}=0$, when all j_{*} are even
- B., Lück, Ziegler, 2013, $d \geq 1: \quad w_{(d-1)(k-1)} \neq 0 \quad$ and $\quad w_{1}^{j_{1}} \cdots w_{k-1}^{j_{k-1}}=0$.

A glimpse into the proof of $\bar{c}_{(d-1)\left(k-\alpha_{p}(k)\right)}\left(\xi_{\mathbb{C}^{d}, k}\right) \neq 0$
p an odd prime
$d=p^{t}$ for $t \geq 1$
$\bar{c}_{(d-1)\left(k-\alpha_{p}(k)\right)}\left(\xi_{\mathbb{C}^{d}, k}\right) \in H^{*}\left(F\left(\mathbb{C}^{d}, k\right) / \Im_{k} ; \mathbb{F}_{p}\right)$

A glimpse into the proof of $\bar{c}_{(d-1)\left(k-\alpha_{p}(k)\right)}\left(\xi_{\mathbb{C}^{d}, k}\right) \neq 0$
p an odd prime
$d=p^{t}$ for $t \geq 1$
$\bar{c}_{(d-1)\left(k-\alpha_{p}(k)\right)}\left(\xi_{\mathbb{C}^{d}, k}\right) \in H^{*}\left(F\left(\mathbb{C}^{d}, k\right) / \mathscr{S}_{k} ; \mathbb{F}_{p}\right)$

Theorem (B., F. Cohen, Lück, Ziegler, 2015)
Let $d \geq 2$ and $k \geq 2$ be integers, and let p be an odd prime.
Then

$$
\operatorname{height}\left(H^{*}\left(F\left(\mathbb{R}^{d}, k\right) / \mathfrak{S}_{k} ; \mathbb{F}_{p}\right)\right) \leq \min \left\{p^{t}: 2 p^{t} \geq d\right\}
$$

the image of $F(M, k)$ under the map defined by a generic set $\left\{f_{1}, \ldots, f_{N}\right\}$ does not intersect this set. Remark. The estimate of Theorem 2 is not realistic even in the case $k=2$: the strong Whitney imbedding theorem implies that $I\left(M^{n}, 2\right) \leq 2 n+1$.

Conjecture 2. If n is a power of 2, then the nth power of any element of positive dimension in $H^{*}\left(B\left(\mathbb{R}^{n}, k\right), Z_{2}\right)$ equals zero. In particular, $\left[w\left(T\left(\mathbb{R}^{n}, k\right)\right)\right]^{n}=1$.

Conjecture 1 follows (in the same way as Theorem 1) from the latter conjecture and from the fact that
if k is a power of 2 , then the class $\left[w_{k-1}\left(T\left(\mathbb{R}^{n}, k\right)\right)\right]^{n-1}$ is nontrivial.

References

1. J. W. Milnor and J. D. Stasheff, Characteristic classes, Princeton Univ. Press, Princeton N. J. (1974).
2. D. B. Fuchs, Funkts. Anal. Prilozhen., 4, No. 2, 62-73 (1970).
3. M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer, New York (1973).

V. Vassiliev,

Spaces of functions that interpolate at any k-points,
(Russian) Fun. Ana. i Prilozhen. 26 (1992), pp. 72-74;
(English) Fun. Ana. Appl. 26 (1992), pp. 209-210.

Vassiliev conjecture

Theorem (B., F. Cohen, Lück, Ziegler, 2015)
Let $d \geq 2$ and $k \geq 2$ be integers. Then

$$
\text { height }\left(H^{*}\left(F\left(\mathbb{R}^{d}, k\right) / \Im_{k} ; \mathbb{F}_{2}\right)\right) \leq \min \left\{2^{t}: 2^{t} \geq d\right\} .
$$

THANK YOU FOR YOUR ATTENTION

and

Thank's to the organizers

Graham Denham, Soumen Sarkar, Don Stanley, Alex Suciu

> and
apology to
Don Stanley

