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Cutting

Conjecture (Nandakumar & Ramana Rao 2006)

Every convex polygon P in the plane can be partitioned into
any prescribed number < of convex pieces that have equal
area and equal perimeter.
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'Fair' Partitions
Let us (N. Ramana Rao and self) float yet another geometric conjecture

Given any convex shape and any positive integer N. There exist some

way(s) of partitioning this shape into N convex pieces so that all pieces have
equal area and equal perimeter.

Note: We could define the 'fair partition' of a polygon as a partition into
pieces of equal area and perimeter and further, a 'convex fair partition' as a
fair partition in which the pieces are also convex. The claim above could be
restated as: "for any N, any convex shape allows convex fair partitioning into
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Cutting

| could not find any known result on this - although there has been work
on dividing into pieces so that every piece has same area and the same
fraction of the outer boundary of the target. The requirement that all

pieces should have same perimeter is not very easy to ensure - at least

not as easy as ensuring equal areas for them. One does not know ab
initio what precise perimeter each piece should have!




Embedding

Definition
A continuous map is if for every
pairwise distinct points xi,...,xy the vectors

f(x1),...,f(xk) are linearly independent.
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(2) f:C—=RxCk1, f(z)=(1,z,...,251) is k-regular.



Embedding

Definition

A continuous map is if for every

pairwise distinct points xi,...,x, the vectors
f(x1),...,f(xx) are linearly independent.

Example

(1) f: R — Rk, f(t)=(1,t,...,tk71) is a k-regular map.

=11 ]
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(2) f:C—=RxCk1, f(z)=(1,z,...,251) is k-regular.
(3) f:C—Ck, f(z)=(1,z,...,2571) is complex k-regular.

Conjecture (Cohen & Handel 1978, Chisholm 1979)
If is k-regular, then



Further embeddings

Definition
Affine subspaces of RN are if

dimaff(LU---ULy) =(dimL; +1)+ -+ (dimL,+1) — 1.
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Definition
A smooth map is if pairwise distinct
points yi,...,y; on M the affine subspaces
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are affinely independent.
Here df : TM — TRN and : TRN — RN, (x,v) = x + v.



Further embeddings

Definition
Affine subspaces of RN are if

dimaff(LU---ULy) =(dimL; +1)+ -+ (dimL,+1) — 1.

Definition
A smooth map is if pairwise distinct
points yi,...,y; on M the affine subspaces

(LO dﬂ’l)(ThM)?” '7(Lo dfyz)(T}’KM)

are affinely independent.
Here df : TM — TRN and : TRN — RN, (x,v) = x + v.

Conjecture
If is {-skew, then

where
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A of length /< in a smooth strictly convex body

is a sequence of points on 9T such that for
every 0 < i < k + 1 the interior normal to 9T at the point x;
bisects the angle /x;_1x;xj 1.
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Bouncing

A of length /< in a smooth strictly convex body

is a sequence of points on 9T such that for
every 0 < i < k + 1 the interior normal to 9T at the point x;
bisects the angle /x;_1x;xj 1.

If xo = xx then the billiard trajectory (xg,...,xx) is called
of period n if the normal to 9T at the point xg
bisects the angle /x;_1x0x1.

Problem
Let and be a smooth strictly convex body. Estimate the
number of periodic billiard trajectories of the period k on

the body T? modulo the action of dihedral group



The vector bundle

is a & -representation, where &, permutes coordinates
a subrepresentation
a subrepresentation

R~ W, @ T,

R* F(X, k) x Rk

F(X, k)
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is a G -representation, where &, permutes coordinates
a subrepresentation
a subrepresentation

R"%Wk@Tk

Rk F(X, k) xs, R¥

F(X, k)/ S«



The vector bundle

RK — F(X, k) xe, RK—— F(X, k) /&

Wi —— F(X, k) xg, Wi —— F(X, k)/Sy

Ty —— F(X, k)6 x Ty —— F(X, k)/S

Ex.k = Cx ok D TX K



The vector bundle

RF —— F(X, k) xg, RK —— F(X, k) /&

W, —— F(X, k) X&, W, —— F(Xak)/Gk

Tk%F(X,k)/gk X Tkg)F(X,k)/Gk

Ex.k = Cx ok D TX K

w(éxk) = w(Cxk)  w(Txk) = w(Cx k)
cxk®C) = c(Cxk®C)-c(rxk®@C)=c({xk®C)



The vector bundle

RF — F(X, k) xe, R —— F(X, k)/&
&ro o is stably isomorphic to the canonical bundle over RP9~!

F. Cohen, R. Cohen, Kuhn, Neisendorfer:

Bundles over configuration spaces,

Pacific J. of Math., 1983

Stable order of {rs , = minimal m such that m¢r. , stabely trivial

d—1
= 2r(d=1) [Ts<px pl 2 ) for d # 0 mod 4



Connection

cutting H*(F(RY, k)/Gy; 299-1)
k-regular H*(F(R?, k)/Gy; F2)
(-skew H*(F(R?, k)6 F2)
comp. k-regular H*(F(R?, k)/Gy; F,)

bouncing H*(F(R?, p)/G&,; Z@4-1)
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Cutting polygons and the twisted Euler class of C@d 1
V(Xl,..., )—(Cl.,...,Ck)

G = {xeR¥:|x—x| <|x—x]| for 1 <j <k}
[x € Rt [lx = xi[[2 = [Ix|2 < flx — x| — Ix|]? for 1< j < K},

P(xt, .oy xkswi, ... wi) = (P1,..., Pc) where wy,...,w, € R and

Pri={x € R : [lx — x| — w; < [[x — x| — w; for 1< < k}.

Theorem (Kantorovich 1939, etc.)

Let ;iy be an absolutely continuous probability measure on R and
k > 2. Then for any xq,...,xx € RY with x; # x; forall 1 < < j<h

there are weights wy,...,w, € R, wy + -+ + wy = 0, such that the
generalized Voronoi diagram P(xy, ..., xx; w1, ..., wx) equiparts the
measure [1y. Moreover, the weights wy, . .., wy

o are unique,
o depend continuously on xi, ..., x.



Cutting polygons and the twisted Euler class of C@d 1

a convex body in the plane R?

=p(KNPL)+ -+ p(KN P

(X1, -+ %) (Py,...,PY) (p(KNP) =2, p(KNPy) —
K
2
F(R 7k) Sy Wk

Theorem

(1) If there is no &, -map , then the
Nandakumar & Ramana Rao conjecture has a solution.

(2) If does not have a nowhere nonzero cross-section,
then there is no &, -map

(3) If the twisted Euler class of does not vanish, then

does not have a nowhere nonzero cross-section.



Cutting polygons and the twisted Euler class of Clg(,d;l

Theorem (B., Ziegler, 2014)

if and only if  is a prime power.



k-regular maps and the dual Stiefel-Whitney class W(y—_1)(k—aa (k) (§re k)

f: RY — RN a k-regular (f: C? — CN complex k-regular)
(X1, o) > (FOa), - F(x)
F(Rd, k) —e, Vk(RN) F((Cd, k) —e, VE(CN)



k-regular maps and the dual Stiefel-Whitney class W(y—_1)(k—aa (k) (§re k)

f: RY — RN a k-regular (f: C? — CN complex k-regular)
(X1, o) > (FOa), - F(x)
F(Rd, k) —e, Vk(RN) F((Cd, k) —e, VE(CN)

F(RY, k) — e, Vi(RY) exists <= {ga  has (N — k)-inv.

W(d—1)(k—aa(k)) (Ere k) # 0 =

k-regular map RY — Rd(k—az(k))+az(k)-1



k-regular maps and the dual Stiefel-Whitney class W(y—_1)(k—aa (k) (§re k)

Theorem (B., Liick, Ziegler 2013)
If , then

d = 2: Cohen & Handel 1978,

d =2m: Chisholm 1979



Billiards and e((Rd kl Z®d=1) for k an odd prime

Problem
Let and be a smooth strictly convex body.
Estimate the number of periodic billiard trajectories of the

period k on the body T? modulo the action of dihedral group
k is an odd prime
G(SY 1 k) = {(x1,..,xk) € (ST )1 x; # xi1}
L: G(ST71 k) — R, (x1,...,xk) — — > |xi — Xj1|

(x1,...,xx) periodic traj. <= (x1,...,xk) critical pt. of L
N(T9 k) > cat (G(S971, k)/Dax

)
N(T9 k) > cat (G(S971, k)/Dax) > cat (G(S971, k)/Z/k)
> max{wgt( ):a€ H*(G(S91 k)/Z/k Fr)



Billiards and e((@d_1 Z®d-1

Rk ) for k an odd prime

F(RY,k)/Z/k ——— G(S%1,k)/Z/k ————— BZ/k

H*(F(RI7Y,k)/Z/k) e«—— H*(G(S9 1, k)/Z/k) «+——— H*(BZ/k)

0#a* i



Billiards and e((@d_1 Z®d-1

ROk ) for k an odd prime

F(RY=1,k)/Z/k ——— G(S9,k)/Z/k ————— BZ/k

H*(F(RI7Y. k)/Z/k) «—— H*(G(S9 1, k)/Z/k) +—— H*(BZ/k)

0 # a* ,

a* = (reduction of coefficients)o(resg/kk) (e( ]%d;l’ Z®d—1))



Billiards and e((Rd kl Z®d=1) for k an odd prime

Base on the work of Farber and Farber & Tabachnikov:

Theorem (Karasev, 2009)

Let d > 3 and k > 2 be a prime. Then

N(T9 k) > (d —2)(k—1)+2



How do we actually compute these classes?
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A glimpse into the proof of e(Cﬂegf;l, Zed=1) £ 0
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if and only if



A glimpse into the proof of e(C}%’;l,Z@d_l) #£0

_
Sy

if and only if

Theorem (Ram 1909)

For all n € N we have

cd{ k\ [k k }_ p if k is a prime power p’,
& 1)7\2)77 " \k—-1 |1 otherwise.



A glimpse into the proof of Wg_1)(k—a,(k))(§re k) 7 0

_ 3 <Jj1+"'+jk1)wj1”.wjk1
= - 1 k-1

. & 1 J25 oons Jk—1
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A glimpse into the proof of Wg_1)(k—a,(k))(§re k) 7 0

_ 3 <Jj1+"'+jk1)wj1”.wjk1
= - 1 k-1

. & 1 J25 oons Jk—1
J1seejk—120 » J2 » Jk
Ji+2ja+- A (k=1)jk—1=(d—1)(k—1)

T S = .
_ + Z <le Jk1>W{1

. . i 1 '2 .. 'k—l
J1seeerfk—2>0;d—2>j;_1>0 y J25 y J
Jat2ja+- -+ (k—1)jk—1=(d—1)(k—1)

ot e ) L G
1, 2y ovvy Jk—1 )t Uk-a)!

Cohen & Handel, 1978, d = 2: W(g_1)(k—1) = Wk—1 = Wk—1 # 0,
(j1+"'+fk—1)!
B., Liick, Ziegler, 2013, d > 1: wig_g)k_1) #0 and wjl ... wikjll =o.

Chisholm, 1979, d = 2™: Wd—1)(k—1) # 0 and = 0, when all j, are even

_”le('k_—



A glimpse into the proof of Gg_1)(k—a,(k))(Ece k) # 0

p an odd prime
d=ptfort>1
E(d—1)(k—ap(k) (Eca k) € H*(F(CY, k) /Sy; Fp)



A glimpse into the proof of Gg_1)(k—a,(k))(Ece k) # 0

p an odd prime

d=ptfort>1
C(d—1)(k—ap(k)) (Ecd k) € H*(F(C?, k) /S ; Fp)

Theorem (B., F. Cohen, Liick, Ziegler, 2015)

Let d > 2 and k > 2 be integers, and let p be an odd prime.
Then

height (H*(F(R?, k) /G, F,)) < min{p : 2p* > d}.



the image of F(M, k) under the map defined by a gen: sct this set.
Remark. The estimate of Theorem 2 is not realist

imbedding theorem implies that I(M™,2) <2n+1.

{fi, ..., fn} does not inter
n in the case k = 2: the strong Whitney

Conjecture 2. If 1 is a power of 2, then the nth power of any element of positive dimension in

H*(B(R", k), Z2) equals zero. In particular, [w(T(R™, k)" =1.

Conjecture 1 follows (in the same way as Theorem 1) from the latter conjecture and from the fact that
if k is a power of 2, then the class [wk—y(T(R™, k))]*~! is nontrivial.
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Vassiliev conjecture

Theorem (B., F. Cohen, Liick, Ziegler, 2015)

Let d > 2 and k > 2 be integers. Then

height (H*(F(RY, k) /& ;o)) < min{2f : 2t > d}.
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