Polyhedral products and monodromy

Mentor Stafa
ETH Zürich, Switzerland

Combinatorial Constructions in Topology
Regina, SK - August 17-21, 2015

Outline

(1) Polyhedral Products
(2) Denham-Suciu fibrations
(3) Monodromy action
(4) An extension problem

Polyhedral Products

Ingredients:

- a simplicial complex K
- a sequence of pairs of spaces $\left(X_{1}, A_{1}\right), \ldots,\left(X_{n}, A_{n}\right)$ denoted by $(\underline{X}, \underline{A})$
- a functor $D: K \rightarrow T o p$, where $D(\sigma)=Y_{1} \times \cdots \times Y_{n}$, with $Y_{i}=A_{i}$ if $i \notin \sigma$ and $Y_{i}=X_{i}$ if $i \in \sigma$.

Definition

The polyhedral product denoted $Z_{K}(\underline{X}, \underline{A})$ is the topological space defined by the colimit

$$
Z_{K}(\underline{X}, \underline{A})=\operatorname{colim}_{\sigma \in K} D(\sigma)=\bigcup_{\sigma \in K} D(\sigma) \subseteq \prod_{i=1}^{n} X_{i}
$$

where the maps are the inclusions and the topology is the subspace topology.

Hence, polyhedral products are a generalized version of moment-angle complexesgiven by $Z_{K}\left(D^{2}, S^{1}\right)$.

Example

Some classical examples of polyhedral products are the following:

1. Let $K=\{\{1\}, \ldots,\{n\}\}, X_{i}=X$ and A_{i} be the basepoint $* \in X$. Then

$$
Z_{K}(\underline{X}, \underline{A})=X \vee \cdots \vee X
$$

the n-fold wedge sum of the space X.
2. Let $K=2^{[n]}$, then $Z_{K}(\underline{X}, \underline{A})=X_{1} \times \cdots \times X_{n}$.
3. Let $K=\{\{1\},\{2\}\}$ and $(\underline{X}, \underline{A})=\left(D^{n}, S^{n-1}\right)$. Then

$$
Z_{K}(\underline{X}, \underline{A})=D^{n} \times S^{n-1} \cup S^{n-1} \times D^{n}=\partial D^{2 n}=S^{2 n-1} .
$$

4. If $|K|$ is the boundary of the simplex $\Delta[n-1]$, then $Z_{K}(\underline{X})$ is the fat wedge of the spaces X_{1}, \ldots, X_{n}.

Some facts about polyhedral products:

1. (Denham-Suciu) The polyhedral product $Z_{K}(X, A)$ depends only on the relative homotopy type of the pair (X, A).
E.g. if G is finite, then $(E G, G) \simeq_{\text {rel }}([0,1], F)$, where F is a finite subset of the unit interval with $|G|$ elements. Hence,

$$
Z_{K}(E G, G) \simeq Z_{K}([0,1], F)
$$

for any K.
2. (Bahri-Bendersky-Cohen-Gitler) If $(\underline{X}, \underline{A})$ is a sequence of pointed and connected CW-pairs, then there is a homotopy equivalence

$$
\Sigma\left(Z_{K}(\underline{X}, \underline{A})\right) \rightarrow \Sigma\left(\bigvee_{I \leq[n]} \widehat{Z}_{K_{I}}\left(\underline{X_{I}}, \underline{A_{I}}\right)\right)
$$

3. (Wedge Lemma) When applied to polyhedral products, follows from the decomposition above; i.e. if $A_{i} \subset X_{i}$ is null-homotopic, then

$$
\Sigma\left(Z_{K}(\underline{X}, \underline{A})\right) \rightarrow \Sigma\left(\bigvee_{I}\left(\bigvee_{\sigma \in K_{I}}\left|\Delta\left(K_{I}\right)_{<\sigma}\right| * \widehat{D}(\sigma)\right)\right)
$$

A fibration

Consider the circle S^{1} and its classifying space $B S^{1} \simeq \mathbb{C} P^{\infty}$.
There is an inclusion map

$$
B S^{1} \vee \cdots \vee B S^{1} \hookrightarrow B S^{1} \times \cdots \times B S^{1}
$$

with homotopy fibre proved by V. Buchstaber and T. Panov to be the polyhedral product

$$
Z_{K}\left(E S^{1}, S^{1}\right)
$$

where K is a set of n vertices and $E S^{1}$ is the universal cover of $B S^{1}$, hence there is a fibration

$$
Z_{K}\left(E S^{1}, S^{1}\right) \rightarrow B S^{1} \vee \cdots \vee B S^{1} \hookrightarrow B S^{1} \times \cdots \times B S^{1} .
$$

Denham-Suciu fibrations

G. Denham and A. Suciu gave a generalization to this fibration:

Let G be a topological group with $B G$ its classifying space and $E G$ the universal cover of $B G$. Then the inclusion map

$$
Z_{K}(B G, *) \hookrightarrow \prod_{n} B G
$$

has homotopy fibre $Z_{K}(E G, G)$, where K is any simplicial complex with n vertices.

Definition

The fibrations

$$
Z_{K}(E G, G) \rightarrow Z_{K}(B G, *) \hookrightarrow \prod_{n} B G
$$

will be called Denham-Suciu fibrations.

The fundamental group

Theorem

Let G be a finite group. The fundamental group of $Z_{K}(B G, *)$ is is given by

$$
\pi_{1}\left(Z_{K}(B G, *)\right) \cong \prod_{K_{1}} G
$$

where K_{1} is the 1-skeleton of K and the product is the graph product of groups.

This theorem holds also if we change $(B G, *)$ by $(\underline{B G}, \underline{*})$ and G_{1}, \ldots, G_{n} are countable discrete groups:

$$
\pi_{1}\left(Z_{K}(\underline{B G}, \underline{*})\right) \cong \prod_{K_{1}} G_{i} .
$$

Eilenberg-MacLane spaces

Recall that an Eilenberg-Maclane space X has the property that all but one homotopy groups are zero. If $\pi_{n}(X)=A \neq 0$, then the space is denoted by $K(A, n)$ since it is unique up to homotopy.

The simplicial complex K is called a flag complex if any finite set of vertices, which are pairwise connected by edges, spans a simplex in K.
M. Davis showed the following:

Theorem (M. Davis)

If K is a flag complex and G is a finite group then $Z_{K}(B G, *)$ is a $K(A, 1)$ with $\prod_{K_{1}} G$.

The converse is also true:

Theorem

If G is finite and $Z_{K}(B G, *)$ is a $K(A, 1)$, then K is a flag complex

Short Exact Sequence

Let K be a flag complex and G_{1}, \ldots, G_{n} be finite groups. Then the fibration

$$
Z_{K}(\underline{E G}, \underline{G}) \rightarrow Z_{K}(\underline{B G}, \underline{*}) \hookrightarrow \prod_{i=1}^{n} B G_{i}
$$

gives a short exact sequence of groups

$$
\pi_{1}\left(Z_{K}(E G, G)\right) \rightarrow \prod_{K_{1}} G_{i} \rightarrow \prod_{i=1}^{n} G_{i}
$$

Note that if K is only the set of n vertices, then the short exact sequence becomes

$$
1 \rightarrow F_{N_{n}} \rightarrow G_{1} * \cdots G_{n} \rightarrow \prod G_{i} \rightarrow 1
$$

The followings are true:

- If K is a set of vertices, then $Z_{K}(E G, G)$ is homotopy equivalent to a graph
- The fundamental group is a free group $F_{N_{n}}$ with

$$
N_{n}=(n-1) \prod_{i=1}^{n} m_{i}-\sum_{i=1}^{n}\left(\prod_{j \neq i} m_{j}\right)+1 .
$$

- Finding the algebraic monodromy amounts to finding the action of the fundamental group on a graph.

Monodromy action

For any locally trivial fibration $F \rightarrow E \rightarrow B$ the fundamental group of the base acts on the fibre.

For the free group F_{n} and $n \geq 2$, there is a short exact sequence of groups

$$
1 \longrightarrow \operatorname{Inn}\left(F_{n}\right) \longrightarrow \operatorname{Aut}\left(F_{n}\right) \longrightarrow \operatorname{Out}\left(F_{n}\right) \longrightarrow 1
$$

and hence, a commutative diagram

where G_{1}, \ldots, G_{n} are finite discrete groups. So the map

$$
\Theta: G_{1} * \cdots * G_{n} \rightarrow \operatorname{Aut}\left(F_{N_{n}}\right)
$$

induces a map

$$
\widetilde{\Theta}: G_{1} \times \cdots \times G_{n} \rightarrow \operatorname{Out}\left(F_{N_{n}}\right),
$$

which is the representation we are interested in.

Monodromy

Consider the fibration

$$
Z_{K}(\underline{E G}, \underline{G}) \rightarrow Z_{K}(\underline{B G}, \underline{*}) \hookrightarrow \prod_{i=1}^{n} B G_{i}
$$

Then the fundamental group $\pi_{1}\left(\prod_{i=1}^{n} B G_{i}\right)=\prod_{i=1}^{n} G_{i}$ acts on the fibre $Z_{K}(\underline{E G}, \underline{G})$; hence acts on the fundamental group $\pi_{1}\left(Z_{K}(\underline{E G}, \underline{G})\right)$ and on the homology $H_{1}=\pi_{1} /\left[\pi_{1}, \pi_{1}\right]$. (note $\left.n \geq 2\right)$

If K is a flag complex, then $Z_{K}(\underline{E G}, \underline{G})$ is a $K(\pi, 1)$.
Initially we consider K to be the zero skeleton of a finite simplicial complex.

Monodromy, $n=2$

Let G_{1} and G_{2} be finite cyclic groups with order m and n, respectively, such that $G_{1}=\left\{1, x_{1}, x_{1}^{2}, \ldots, x_{1}^{m-1}\right\}$ and $G_{2}=\left\{1, x_{2}, x_{2}^{2}, \ldots, x_{2}^{n-1}\right\}$.

The zero simplicial complex with two vertices is $K_{0}=\{\{1\},\{2\}\}$.
Assume there are bijections of finite sets $G_{1} \approx F_{1}$ and $G_{2} \approx F_{2}$ given by

$$
\begin{aligned}
& G_{1}=\left\{1, x_{1}, x_{1}^{2}, \ldots, x_{1}^{m-1}\right\} \approx F_{1}=\left\{0=t_{1,0}<t_{1,1}<\cdots<t_{1, m-1}=1\right\} \subset I, \\
& G_{2}=\left\{1, x_{2}, x_{2}^{2}, \ldots, x_{2}^{n-1}\right\} \approx F_{2}=\left\{0=t_{2,0}<t_{2,1}<\cdots<t_{2, n-1}=1\right\} \subset I,
\end{aligned}
$$

identifying x_{i}^{k} with $t_{i, k}$.

Monodromy, $n=2$

Then we have

$$
Z_{K_{0}}(\underline{E G}, \underline{G}) \simeq Z_{K_{0}}(\underline{I}, \underline{F})=D(\{1\}) \cup D(\{2\})=I \times F_{2} \cup F_{1} \times I,
$$

where $1 \leq i \leq m-1$ and $1 \leq j \leq n-1$.
Consider the cycles γ_{ω} starting at the basepoint $*=(0,0)$, given by the words

$$
\omega=\left[x_{1}^{i}, x_{2}^{j}\right]=x_{1}^{i} x_{2}^{j} x_{1}^{-i} x_{2}^{-j} .
$$

The set of words $\mathcal{W}=\left\{\omega_{i j}=\left[x_{1}^{i}, x_{2}^{j}\right] \mid 1 \leq i \leq m-1,1 \leq j \leq n-1\right\}$ is a minimal generating set for all the cycles $\gamma_{\omega} \in Z_{K_{0}}(\underline{I}, \underline{F})$; i.e.

- Every cycle can be represented by a product of elements in \mathcal{W}.
- $|\mathcal{W}|$ equals the rank of $F_{N_{2}}$.

In general, for any $g \in G_{1} * \cdots * G_{n}$, denote $\Theta(g)=\varphi_{g} \in \operatorname{Aut}\left(F_{N_{n}}\right)$.

$G_{1} \times \cdots \times G_{n}$ acts on the loops in the fiber by conjugation, that is,

$$
g \cdot \gamma_{\omega}=\gamma_{g w g^{-1}},
$$

hence

$$
x_{1} \omega_{i j} x_{1}^{-1}=x_{1}\left[x_{1}^{i}, x_{2}^{j}\right] x_{1}^{-1}=\left[x_{1}^{i+1}, x_{2}^{j}\right]\left[x_{2}^{j}, x_{1}\right]=\omega_{i+1, j} \omega_{1 j}{ }^{-1} .
$$

Looking at the induced map of $\varphi_{x_{1}}$ onto the abelianization

$$
\bigoplus_{(r-1)(m-1)} \mathbb{Z} \cong F_{(r-1)(m-1)} /\left[F_{(r-1)(m-1)}, F_{(r-1)(m-1)}\right]
$$

then

$$
\widetilde{\varphi}_{x_{1}}\left(\omega_{11}, \ldots, \omega_{(r-1)(m-1)}\right)=\left(\omega_{2,1}-\omega_{1,1}, \omega_{2,2}-\omega_{1,2}, \ldots,-\omega_{(r-1),(m-1)}\right)
$$

which is given by the matrix

$$
\left[\widetilde{\varphi}_{x_{1}}\right]=\left(\begin{array}{cccccc}
-I_{m-1} & I_{m-1} & 0 & 0 & \cdots & 0 \tag{1}\\
0 & -I_{m-1} & I_{m-1} & 0 & \cdots & 0 \\
0 & 0 & -I_{m-1} & I_{m-1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & -I_{m-1} & I_{m-1} \\
0 & \cdots & 0 & 0 & 0 \cdots & -I_{m-1}
\end{array}\right)
$$

with respect to the basis \mathcal{W}_{2}, where I_{m-1} is the $(m-1) \times(m-1)$ identity matrix. Hence, clearly $\varphi_{x_{1}}$ is not an element of $I A_{k}$.

For $\varphi_{x_{2}} \in \operatorname{Aut}\left(F_{k}\right)$:

$$
x_{2} \omega_{i j} x_{2}^{-1}=x_{2}\left[x_{1}^{i}, x_{2}^{j}\right] x_{2}^{-1}=\left[x_{2}, x_{1}^{i}\right]\left[x_{1}^{i}, x_{2}^{j+1}\right]=\omega_{i, 1}^{-1} \omega_{i, j+1}
$$

Similarly, looking at the induced map of $\varphi_{x_{2}}$ onto the abelianization of F_{k} we get

$$
\widetilde{\varphi}_{x_{2}}\left(\omega_{11}, \ldots, \omega_{(r-1)(m-1)}\right)=\left(-\omega_{1,1}+\omega_{1,2}-\omega_{1,1}+\omega_{1,3}, \ldots,-\omega_{(r-1),(m-1)}\right)
$$

which is given by the matrix

$$
\left.\widetilde{\varphi}_{x_{2}}\right]=\left(\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{r-1}
\end{array}\right), A_{i}=\left(\begin{array}{cccccc}
-1 & 1 & 0 & 0 & \cdots & 0 \\
-1 & 0 & 1 & 0 & \cdots & 0 \\
-1 & 0 & 0 & 1 & \cdots & 0 \\
-1 & 0 & 0 & 0 & \ddots & 0 \\
\vdots & \vdots & \vdots & \vdots & \cdots & 1 \\
-1 & 0 & 0 & 0 & \cdots & 0
\end{array}\right) \text { for all } i
$$

with respect to the basis \mathcal{W}. Hence, $\varphi_{x_{2}}$ is not an element of $I A_{k}$.

Monodromy for any K_{0}

Recall that for a group G, there is a sequence of subgroups called the descending central series of G given by

$$
G=\Gamma^{1}(G) \unrhd \Gamma^{2}(G) \unrhd \cdots \unrhd \Gamma^{n}(G) \unrhd \cdots,
$$

where the second stage is $\Gamma^{2}(G)=[G, G]$ and the $(n+1)$-st stage is given inductively by $\Gamma^{n+1}(G)=\left[\Gamma^{n}(G), G\right]$. The Lie algebra of G associated to the descending central series is given by

$$
\operatorname{gr}_{*}(G)=\bigoplus_{i \geq 1} \Gamma^{i}(G) / \Gamma^{i+1}(G)
$$

with $\operatorname{gr}_{p}(G)=\Gamma^{p}(G) / \Gamma^{p+1}(G)$.

Monodromy for any K_{0}

Lemma

Let $\left\{G_{i}\right\}_{i=1}^{n}$ be a collection of finite discrete groups and K_{0} be the 0 -simplicial complex on n vertices. Let $\rho: \prod_{i=1}^{n} G_{i} \rightarrow \operatorname{Out}\left(F_{N}\right)$ be the monodromy representation where F_{N} is isomorphic to the kernel of the projection $p: G_{1} * \cdots * G_{n} \rightarrow \prod_{i=1}^{n} G_{i}$. Then the following hold:

1. There is a choice of a generating set for $F_{N_{n}}$ that consists of elements of the form

$$
f=\left[g_{i_{1}},\left[g_{i_{2}},\left[\ldots,\left[g_{i_{k-1}}, g_{i_{k}}\right] \ldots\right]\right]\right] \in \Gamma^{k}\left(G_{1} * \cdots * G_{n}\right)
$$

such that $g_{i_{j}} \in G_{i_{j}}$, for all i_{j}.
2. For any $g \in G_{1} * \cdots * G_{n}$, the map $\rho(g) \in \operatorname{Aut}\left(F_{N}\right)$ satisfies $\rho(g)(f)=\Delta \cdot f$, where $\Delta \in \Gamma^{k+1}\left(G_{1} * \cdots * G_{n}\right)$. That is, Δ is trivial in $\operatorname{gr}_{p}\left(G_{1} * \cdots * G_{n}\right)$ for $p \leq k$.

Remark:

The part of the problem that makes it algebraically inaccessible is that, even though we know the rank of the free group, we do not have an explicit list of elements that forms a set of generators for this free group.

Hence, using the polyhedral product model of the fibre, we get a geometric description of the monodromy action.

General K

It would be interesting to determine whether the representations for various choices of K are related.

If $\pi=\pi_{1}\left(Z_{K}(\underline{E G}, \underline{G})\right)$, then we are interested in the following diagram:

Open questions:

- determine the algebraic interpretation of monodromy for a finite number of cyclic groups.
- determine whether the monodromy for K_{0} informs about the monodromy for other K.

An extension problem

Assume $\left\{G_{1}, \ldots, G_{n}\right\}$ is a family of subgroups of a finite discrete group G. Then there is a natural map

$$
G_{1} * \cdots * G_{n} \xrightarrow{\varphi} G .
$$

It is natural to ask the following: for what abstract simplicial complexes K on $[n]$ does the map $B G_{1} \vee \cdots \vee B G_{n} \xrightarrow{B \varphi} B G$ extend to $Z_{K}(\underline{B G})$, i.e following diagram commutes:

If the map in question extends, then we detect commuting elements in G. Algebraically, determine K s.t. the following diagram commutes:

Thank you for your attention...

References:
arXiv:1402.3270
arXiv:1310.3504

